On the Iwasawa $\lambda$-invariant of the cyclotomic $\mathbb {Z}_2$-extension of $\mathbb {Q}(\sqrt {p} )$
HTML articles powered by AMS MathViewer
- by Takashi Fukuda and Keiichi Komatsu;
- Math. Comp. 78 (2009), 1797-1808
- DOI: https://doi.org/10.1090/S0025-5718-09-02124-3
- Published electronically: January 28, 2009
- PDF | Request permission
Abstract:
We study the Iwasawa $\lambda$-invariant of the cyclotomic $\mathbb {Z}_2$-extension of $\mathbb {Q}(\sqrt {p} )$ for an odd prime number $p$ which satisfies $p\equiv 1\pmod {16}$ relating it to units having certain properties. We give an upper bound of $\lambda$ and show $\lambda =0$ in certain cases. We also give new numerical examples of $\lambda =0$.References
- Armand Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121–124. MR 220694, DOI 10.1112/S0025579300003703
- Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant $\mu _{p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395. MR 528968, DOI 10.2307/1971116
- U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44 (1985), no. 170, 463–471. MR 777278, DOI 10.1090/S0025-5718-1985-0777278-8
- Takashi Fukuda and Keiichi Komatsu, On $\textbf {Z}_p$-extensions of real quadratic fields, J. Math. Soc. Japan 38 (1986), no. 1, 95–102. MR 816225, DOI 10.2969/jmsj/03810095
- Takashi Fukuda and Keiichi Komatsu, On the Iwasawa $\lambda$-invariant of the cyclotomic $\mathbf Z_2$-extension of a real quadratic field, Tokyo J. Math. 28 (2005), no. 1, 259–264. MR 2149635, DOI 10.3836/tjm/1244208291
- Takashi Fukuda, Keiichi Komatsu, Manabu Ozaki, and Hisao Taya, On Iwasawa $\lambda _p$-invariants of relative real cyclic extensions of degree $p$, Tokyo J. Math. 20 (1997), no. 2, 475–480. MR 1489480, DOI 10.3836/tjm/1270042120
- Ralph Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), no. 1, 263–284. MR 401702, DOI 10.2307/2373625
- Ralph Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), no. 1, 85–99. MR 504453, DOI 10.1007/BF01609481
- Humio Ichimura and Hiroki Sumida, On the Iwasawa invariants of certain real abelian fields, Tohoku Math. J. (2) 49 (1997), no. 2, 203–215. MR 1447182, DOI 10.2748/tmj/1178225147
- Kenkichi Iwasawa, On $\Gamma$-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183–226. MR 124316, DOI 10.1090/S0002-9904-1959-10317-7
- Kenkichi Iwasawa, On the $\mu$-invariants of $Z_{\ell }$-extensions, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya Book Store, Tokyo, 1973, pp. 1–11. MR 357371
- Kenkichi Iwasawa, On $\textbf {Z}_{l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326. MR 349627, DOI 10.2307/1970784
- Kenkichi Iwasawa, Riemann-Hurwitz formula and $p$-adic Galois representations for number fields, Tohoku Math. J. (2) 33 (1981), no. 2, 263–288. MR 624610, DOI 10.2748/tmj/1178229453
- Yûji Kida, Cyclotomic $\textbf {Z}_{2}$-extensions of $J$-fields, J. Number Theory 14 (1982), no. 3, 340–352. MR 660379, DOI 10.1016/0022-314X(82)90069-5
- James S. Kraft and René Schoof, Computing Iwasawa modules of real quadratic number fields, Compositio Math. 97 (1995), no. 1-2, 135–155. Special issue in honour of Frans Oort. MR 1355121
- Tomio Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65–85 (German). MR 83009
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- Yasushi Mizusawa, On the Iwasawa invariants of $\Bbb Z_2$-extensions of certain real quadratic fields, Tokyo J. Math. 27 (2004), no. 1, 255–261. MR 2060089, DOI 10.3836/tjm/1244208489
- Manabu Ozaki and Hisao Taya, On the Iwasawa $\lambda _2$-invariants of certain families of real quadratic fields, Manuscripta Math. 94 (1997), no. 4, 437–444. MR 1484637, DOI 10.1007/BF02677865
- Michael E. Pohst, Computational algebraic number theory, DMV Seminar, vol. 21, Birkhäuser Verlag, Basel, 1993. MR 1243639, DOI 10.1007/978-3-0348-8589-8
- Michael E. Pohst, Computing invariants of algebraic number fields, Group theory, algebra, and number theory (Saarbrücken, 1993) de Gruyter, Berlin, 1996, pp. 53–73. MR 1440204
- Takae Tsuji, On the Iwasawa $\lambda$-invariants of real abelian fields, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3699–3714. MR 1990169, DOI 10.1090/S0002-9947-03-03357-9
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- André Weil, Basic number theory, 3rd ed., Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag, New York-Berlin, 1974. MR 427267
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 1053488, DOI 10.2307/1971468
Bibliographic Information
- Takashi Fukuda
- Affiliation: Department of Mathematics, College of Industrial Technology, Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
- Email: fukuda@math.cit.nihon-u.ac.jp
- Keiichi Komatsu
- Affiliation: Department of Mathematical Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Email: kkomatsu@waseda.jp
- Received by editor(s): May 30, 2007
- Received by editor(s) in revised form: November 16, 2007
- Published electronically: January 28, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 1797-1808
- MSC (2000): Primary 11G15, 11R27, 11Y40
- DOI: https://doi.org/10.1090/S0025-5718-09-02124-3
- MathSciNet review: 2501076
Dedicated: In memory of Professor H. Ogawa