Stieltjes-type polynomials on the unit circle
HTML articles powered by AMS MathViewer
- by B. de la Calle Ysern, G. López Lagomasino and L. Reichel;
- Math. Comp. 78 (2009), 969-997
- DOI: https://doi.org/10.1090/S0025-5718-08-02195-9
- Published electronically: October 27, 2008
- PDF | Request permission
Abstract:
Stieltjes-type polynomials corresponding to measures supported on the unit circle $\mathbb {T}$ are introduced and their asymptotic properties away from $\mathbb {T}$ are studied for general classes of measures. As an application, we prove the convergence of an associated sequence of interpolating rational functions to the corresponding Carathéodory function. In turn, this is used to give an estimate of the rate of convergence of certain quadrature formulae that resemble the Gauss-Kronrod rule, provided that the integrand is analytic in a neighborhood of $\mathbb {T}$.References
- G. S. Ammar, D. Calvetti, and L. Reichel, Computation of Gauss-Kronrod quadrature rules with non-positive weights, Electron. Trans. Numer. Anal. 9 (1999), 26–38. Orthogonal polynomials: numerical and symbolic algorithms (Leganés, 1998). MR 1749795
- M. Bello Hernández, B. de la Calle Ysern, J. J. Guadalupe Hernández, and G. Lopez Lagomasino, Asymptotics for Stieltjes polynomials, Padé-type approximants, and Gauss-Kronrod quadrature, J. Anal. Math. 86 (2002), 1–23. MR 1894475, DOI 10.1007/BF02786642
- I. S. Berezin and N. P. Zhidkov, Computing Methods, Pergamon Press, Oxford, 1965.
- A. Bultheel, P. González-Vera, E. Hendriksen, and O. Njåstad, On the convergence of multipoint Padé-type approximants and quadrature formulas associated with the unit circle, Numer. Algorithms 13 (1996), no. 3-4, 321–344 (1997). MR 1430523, DOI 10.1007/BF02207699
- B. de la Calle Ysern and F. Peherstorfer, Ultraspherical Stieltjes polynomials and Gauss-Kronrod quadrature behave nicely for $\lambda <0$, SIAM J. Numer. Anal. 45 (2007), no. 2, 770–786. MR 2300296, DOI 10.1137/060651896
- D. Calvetti, G. H. Golub, W. B. Gragg, and L. Reichel, Computation of Gauss-Kronrod quadrature rules, Math. Comp. 69 (2000), no. 231, 1035–1052. MR 1677474, DOI 10.1090/S0025-5718-00-01174-1
- Sven Ehrich, On product integration with Gauss-Kronrod nodes, SIAM J. Numer. Anal. 35 (1998), no. 1, 78–92. MR 1618432, DOI 10.1137/S0036142995295790
- Sven Ehrich and Giuseppe Mastroianni, Stieltjes polynomials and Lagrange interpolation, Math. Comp. 66 (1997), no. 217, 311–331. MR 1388888, DOI 10.1090/S0025-5718-97-00808-9
- Walter Gautschi, Gauss-Kronrod quadrature—a survey, Numerical methods and approximation theory, III (Niš, 1987) Univ. Niš, Niš, 1988, pp. 39–66. MR 960329
- J. Geronimus, On the trigonometric moment problem, Ann. of Math. (2) 47 (1946), 742–761. MR 18265, DOI 10.2307/1969232
- P. González-Vera, J. C. Santos-León, and O. Njåstad, Some results about numerical quadrature on the unit circle, Adv. Comput. Math. 5 (1996), no. 4, 297–328. MR 1414284, DOI 10.1007/BF02124749
- Ch. Hermite and T. J. Stieltjes, Correspondance d’Hermite et de Stieltjes, Prentice-Hall, Englewood Cliffs, NJ, 1966.
- Carl Jagels and Lothar Reichel, Szegő-Lobatto quadrature rules, J. Comput. Appl. Math. 200 (2007), no. 1, 116–126. MR 2276819, DOI 10.1016/j.cam.2005.12.009
- William B. Jones, Olav Njåstad, and W. J. Thron, Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989), no. 2, 113–152. MR 976057, DOI 10.1112/blms/21.2.113
- Aleksandr Semenovich Kronrod, Nodes and weights of quadrature formulas. Sixteen-place tables, Consultants Bureau, New York, 1965. Authorized translation from the Russian. MR 183116
- Dirk P. Laurie, Calculation of Gauss-Kronrod quadrature rules, Math. Comp. 66 (1997), no. 219, 1133–1145. MR 1422788, DOI 10.1090/S0025-5718-97-00861-2
- Attila Máté, Paul Nevai, and Vilmos Totik, Extensions of Szegő’s theory of orthogonal polynomials. II, III, Constr. Approx. 3 (1987), no. 1, 51–72, 73–96. MR 892168, DOI 10.1007/BF01890553
- Giovanni Monegato, Stieltjes polynomials and related quadrature rules, SIAM Rev. 24 (1982), no. 2, 137–158. MR 652464, DOI 10.1137/1024039
- Giovanni Monegato, An overview of the computational aspects of Kronrod quadrature rules, Numer. Algorithms 26 (2001), no. 2, 173–196. MR 1829797, DOI 10.1023/A:1016640617732
- F. Peherstorfer, Szegő-Kronrod quadrature on the unit circle, manuscript.
- Franz Peherstorfer and Knut Petras, Ultraspherical Gauss-Kronrod quadrature is not possible for $\lambda >3$, SIAM J. Numer. Anal. 37 (2000), no. 3, 927–948. MR 1749243, DOI 10.1137/S0036142998327744
- Robert Piessens, Elise de Doncker-Kapenga, Christoph W. Überhuber, and David K. Kahaner, QUADPACK, Springer Series in Computational Mathematics, vol. 1, Springer-Verlag, Berlin, 1983. A subroutine package for automatic integration. MR 712135, DOI 10.1007/978-3-642-61786-7
- E. A. Rakhmanov, Asymptotic properties of polynomials orthogonal on the circle with weights not satisfying the Szegő condition, Mat. Sb. (N.S.) 130(172) (1986), no. 2, 151–169, 284 (Russian); English transl., Math. USSR-Sb. 58 (1987), no. 1, 149–167. MR 854969, DOI 10.1070/SM1987v058n01ABEH003097
- Thomas Ransford, Potential theory in the complex plane, London Mathematical Society Student Texts, vol. 28, Cambridge University Press, Cambridge, 1995. MR 1334766, DOI 10.1017/CBO9780511623776
- B. Simon, Orthogonal Polynomials on the Unit Circle, AMS Colloquium Publications 54, Parts I, II, Providence, RI, 2005.
- Herbert Stahl and Vilmos Totik, General orthogonal polynomials, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992. MR 1163828, DOI 10.1017/CBO9780511759420
- G. Szegö, Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören, Math. Ann. 110 (1935), no. 1, 501–513 (German). MR 1512952, DOI 10.1007/BF01448041
Bibliographic Information
- B. de la Calle Ysern
- Affiliation: Departamento de Matemática Aplicada, E. T. S. de Ingenieros Industriales, Universidad Politécnica de Madrid, José G. Abascal 2, 28006 Madrid, Spain
- Email: bcalle@etsii.upm.es
- G. López Lagomasino
- Affiliation: Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Universidad 30, 28911 Leganés, Spain
- Email: lago@math.uc3m.es
- L. Reichel
- Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242
- Email: reichel@math.kent.edu
- Received by editor(s): October 3, 2007
- Received by editor(s) in revised form: April 25, 2008
- Published electronically: October 27, 2008
- Additional Notes: The work of B. de la Calle received support from Dirección General de Investigación (DGI), Ministerio de Educación y Ciencia, under grants MTM2006-13000-C03-02 and MTM2006-07186 and from UPM-CAM under grants CCG07-UPM/000-1652 and CCG07-UPM/ESP-1896
The work of G. López was supported by DGI under grant MTM2006-13000-C03-02 and by UC3M-CAM through CCG06-UC3M/ESP-0690
The work of L. Reichel was supported by an OBR Research Challenge Grant. - © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 969-997
- MSC (2000): Primary 65D32, 42A10, 42C05; Secondary 30E20
- DOI: https://doi.org/10.1090/S0025-5718-08-02195-9
- MathSciNet review: 2476567