Classification of ternary extremal self-dual codes of length 28
HTML articles powered by AMS MathViewer
- by Masaaki Harada, Akihiro Munemasa and Boris Venkov;
- Math. Comp. 78 (2009), 1787-1796
- DOI: https://doi.org/10.1090/S0025-5718-08-02194-7
- Published electronically: October 24, 2008
- PDF | Request permission
Abstract:
All $28$-dimensional unimodular lattices with minimum norm $3$ are known. Using this classification, we give a classification of ternary extremal self-dual codes of length $28$. Up to equivalence, there are 6,931 such codes.References
- R. Bacher and B. Venkov, Lattices and association schemes: a unimodular example without roots in dimension $28$, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 5, 1163–1176 (English, with English and French summaries). MR 1370742, DOI 10.5802/aif.1490
- Roland Bacher and Boris Venkov, Réseaux entiers unimodulaires sans racines en dimensions 27 et 28, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., vol. 37, Enseignement Math., Geneva, 2001, pp. 212–267 (French, with French summary). MR 1878751
- Christine Bachoc, T. Aaron Gulliver, and Masaaki Harada, Isodual codes over $Z_{2k}$ and isodual lattices, J. Algebraic Combin. 12 (2000), no. 3, 223–240. MR 1803233, DOI 10.1023/A:1011259823212
- W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Available online at http://magma.maths.usyd.edu.au/magma/.
- John H. Conway, Vera Pless, and Neil J. A. Sloane, Self-dual codes over $\textrm {GF}(3)$ and $\textrm {GF}(4)$ of length not exceeding $16$, IEEE Trans. Inform. Theory 25 (1979), no. 3, 312–322. MR 528009, DOI 10.1109/TIT.1979.1056047
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- U. Dempwolff, Translation planes of order $27$, Des. Codes Cryptogr. 4 (1994), no. 2, 105–121. MR 1268564, DOI 10.1007/BF01578865
- Masaaki Harada, New extremal ternary self-dual codes, Australas. J. Combin. 17 (1998), 133–145. MR 1626295
- Masaaki Harada, An extremal ternary self-dual $[28,14,9]$ code with a trivial automorphism group, Discrete Math. 239 (2001), no. 1-3, 121–125. MR 1850990, DOI 10.1016/S0012-365X(01)00041-3
- Masaaki Harada, Masaaki Kitazume, and Michio Ozeki, Ternary code construction of unimodular lattices and self-dual codes over $\Bbb Z_6$, J. Algebraic Combin. 16 (2002), no. 2, 209–223. MR 1943589, DOI 10.1023/A:1021185314365
- M. Harada and A. Munemasa, Database of Self-Dual Codes, Available online at http://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.htm.
- Masaaki Harada, Michio Ozeki, and Kenichiro Tanabe, On the covering radius of ternary extremal self-dual codes, Des. Codes Cryptogr. 33 (2004), no. 2, 149–158. MR 2080361, DOI 10.1023/B:DESI.0000035468.86695.40
- W. Cary Huffman, On extremal self-dual ternary codes of lengths $28$ to $40$, IEEE Trans. Inform. Theory 38 (1992), no. 4, 1395–1400. MR 1168760, DOI 10.1109/18.144724
- W. Cary Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005), no. 3, 451–490. MR 2158773, DOI 10.1016/j.ffa.2005.05.012
- Charles J. Colbourn and Jeffrey H. Dinitz (eds.), The CRC handbook of combinatorial designs, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 1996. MR 1392993, DOI 10.1201/9781420049954
- Jeffrey S. Leon, Vera Pless, and N. J. A. Sloane, On ternary self-dual codes of length $24$, IEEE Trans. Inform. Theory 27 (1981), no. 2, 176–180. MR 633414, DOI 10.1109/TIT.1981.1056328
- C. L. Mallows, V. Pless, and N. J. A. Sloane, Self-dual codes over $\textrm {GF}(3)$, SIAM J. Appl. Math. 31 (1976), no. 4, 649–666. MR 441541, DOI 10.1137/0131058
- C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes, Information and Control 22 (1973), 188–200. MR 414223
- Gabriele Nebe, Finite subgroups of $\textrm {GL}_n(\mathbf Q)$ for $25\leq n\leq 31$, Comm. Algebra 24 (1996), no. 7, 2341–2397. MR 1390378, DOI 10.1080/00927879608825704
- Vera Pless, N. J. A. Sloane, and Harold N. Ward, Ternary codes of minimum weight $6$ and the classification of the self-dual codes of length $20$, IEEE Trans. Inform. Theory 26 (1980), no. 3, 305–316. MR 570014, DOI 10.1109/TIT.1980.1056195
- Eric M. Rains and N. J. A. Sloane, Self-dual codes, Handbook of coding theory, Vol. I, II, North-Holland, Amsterdam, 1998, pp. 177–294. MR 1667939
Bibliographic Information
- Masaaki Harada
- Affiliation: Department of Mathematical Sciences, Yamagata University, Yamagata 990–8560, Japan
- Akihiro Munemasa
- Affiliation: Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan
- Boris Venkov
- Affiliation: Steklov Institute of Mathematics at St. Petersburg, St. Petersburg 191011, Russia
- Received by editor(s): January 29, 2008
- Received by editor(s) in revised form: June 9, 2008
- Published electronically: October 24, 2008
- Additional Notes: The work of the first and second authors was partially supported by the Sumitomo Foundation (Grant for Basic Science Research Projects, 050034).
- © Copyright 2008 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 1787-1796
- MSC (2000): Primary 94B05; Secondary 11H71
- DOI: https://doi.org/10.1090/S0025-5718-08-02194-7
- MathSciNet review: 2501075