Analysis of splitting methods for reaction-diffusion problems using stochastic calculus
HTML articles powered by AMS MathViewer
- by Erwan Faou;
- Math. Comp. 78 (2009), 1467-1483
- DOI: https://doi.org/10.1090/S0025-5718-08-02185-6
- Published electronically: November 6, 2008
- PDF | Request permission
Abstract:
We consider linear and nonlinear reaction-diffusion problems, and their time discretization by splitting methods. We give probabilistic interpretations of the splitting schemes, and show how these representations allow us to give error bounds for the deterministic propagator under weak hypothesis on the reaction part. To show these results, we only use the Itô formula, and basic properties of solutions of stochastic differential equations. Eventually, we show how probabilistic representations of splitting schemes can be used to derive “hybrid” numerical schemes based on Monte Carlo approximations of the splitting method itself.References
- Pierre Bernard, Denis Talay, and Luciano Tubaro, Rate of convergence of a stochastic particle method for the Kolmogorov equation with variable coefficients, Math. Comp. 63 (1994), no. 208, 555–587, S11–S17. MR 1250770, DOI 10.1090/S0025-5718-1994-1250770-3
- E. Brunet and B. Derrida, Microscopic models of traveling wave equations. Comp. Phys. Comm. 121-122 (1999), 376–381.
- Stéphane Descombes, Convergence of a splitting method of high order for reaction-diffusion systems, Math. Comp. 70 (2001), no. 236, 1481–1501. MR 1836914, DOI 10.1090/S0025-5718-00-01277-1
- Stéphane Descombes and Marc Massot, Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: singular perturbation and order reduction, Numer. Math. 97 (2004), no. 4, 667–698. MR 2127928, DOI 10.1007/s00211-003-0496-3
- Stéphane Descombes and Magali Ribot, Convergence of the Peaceman-Rachford approximation for reaction-diffusion systems, Numer. Math. 95 (2003), no. 3, 503–525. MR 2012930, DOI 10.1007/s00211-002-0434-9
- Stéphane Descombes and Michelle Schatzman, On Richardson extrapolation of Strang formula for reaction-diffusion equations, Équations aux dérivées partielles et applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, pp. 429–452. MR 1648232
- Stéphane Descombes and Michelle Schatzman, Strang’s formula for holomorphic semi-groups, J. Math. Pures Appl. (9) 81 (2002), no. 1, 93–114. MR 1994884, DOI 10.1016/S0021-7824(01)01216-8
- R. A. Fisher, The wave advance of advantageous genes. Annals of Eugenics 7 (1937), 355-369.
- Takashi Ichinose and Hideo Tamura, Error bound in trace norm for Trotter-Kato product formula of Gibbs semigroups, Asymptot. Anal. 17 (1998), no. 4, 239–266. MR 1656823
- Tobias Jahnke and Christian Lubich, Error bounds for exponential operator splittings, BIT 40 (2000), no. 4, 735–744. MR 1799313, DOI 10.1023/A:1022396519656
- A. Kolmogorov, I. Petrovsky and N. Piscounov, Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. État Moscou, A 1, (1937), 1–25.
- Elbridge Gerry Puckett, Convergence of a random particle method to solutions of the Kolmogorov equation $u_t=\nu u_{xx}+u(1-u)$, Math. Comp. 52 (1989), no. 186, 615–645. MR 964006, DOI 10.1090/S0025-5718-1989-0964006-X
- Michelle Schatzman, Numerical integration of reaction-diffusion systems, Numer. Algorithms 31 (2002), no. 1-4, 247–269. Numerical methods for ordinary differential equations (Auckland, 2001). MR 1950924, DOI 10.1023/A:1021199103644
- Denis Talay, Probabilistic numerical methods for partial differential equations: elements of analysis, Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995) Lecture Notes in Math., vol. 1627, Springer, Berlin, 1996, pp. 148–196. MR 1431302, DOI 10.1007/BFb0093180
- Satoshi Takanobu, On the error estimate of the integral kernel for the Trotter product formula for Schrödinger operators, Ann. Probab. 25 (1997), no. 4, 1895–1952. MR 1487441, DOI 10.1214/aop/1023481116
- O. Thual and S. Fauve, Localized structures generated by subcritical instabilites. J. Phys. France 49 (1988) 1829–1833.
Bibliographic Information
- Erwan Faou
- Affiliation: INRIA & Ecole Normale Supérieure de Cachan Bretagne, Avenue Robert Schumann, 35170 Bruz, France
- MR Author ID: 656335
- Email: Erwan.Faou@inria.fr
- Received by editor(s): November 13, 2007
- Received by editor(s) in revised form: May 13, 2008
- Published electronically: November 6, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 1467-1483
- MSC (2000): Primary 65M15, 60H30, 65C05
- DOI: https://doi.org/10.1090/S0025-5718-08-02185-6
- MathSciNet review: 2501058