Weak order for the discretization of the stochastic heat equation
HTML articles powered by AMS MathViewer
- by Arnaud Debussche and Jacques Printems;
- Math. Comp. 78 (2009), 845-863
- DOI: https://doi.org/10.1090/S0025-5718-08-02184-4
- Published electronically: October 7, 2008
- PDF | Request permission
Abstract:
In this paper we study the approximation of the distribution of $X_t$ Hilbert–valued stochastic process solution of a linear parabolic stochastic partial differential equation written in an abstract form as \[ \mathrm {d} X_t+AX_t \mathrm {d} t = Q^{1/2} \mathrm {d} W(t), \quad X_0=x \in H, \quad t\in [0,T], \] driven by a Gaussian space time noise whose covariance operator $Q$ is given. We assume that $A^{-\alpha }$ is a finite trace operator for some $\alpha >0$ and that $Q$ is bounded from $H$ into $D(A^\beta )$ for some $\beta \geq 0$. It is not required to be nuclear or to commute with $A$.
The discretization is achieved thanks to finite element methods in space (parameter $h>0$) and a $\theta$-method in time (parameter $\Delta t=T/N$). We define a discrete solution $X^n_h$ and for suitable functions $\varphi$ defined on $H$, we show that \[ |\mathbb {E} \varphi (X^N_h) - \mathbb {E} \varphi (X_T) | = O(h^{2\gamma } + \Delta t^\gamma ) \] where $\gamma <1- \alpha + \beta$. Let us note that as in the finite dimensional case the rate of convergence is twice the one for pathwise approximations.
References
- E. J. Allen, S. J. Novosel, and Z. Zhang, Finite element and difference approximation of some linear stochastic partial differential equations, Stochastics Stochastics Rep. 64 (1998), no. 1-2, 117–142. MR 1637047, DOI 10.1080/17442509808834159
- J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Anal. 14 (1977), no. 2, 218–241. MR 448926, DOI 10.1137/0714015
- Evelyn Buckwar and Tony Shardlow, Weak approximation of stochastic differential delay equations, IMA J. Numer. Anal. 25 (2005), no. 1, 57–86. MR 2110235, DOI 10.1093/imanum/drh012
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR 1207136, DOI 10.1017/CBO9780511666223
- Giuseppe Da Prato and Jerzy Zabczyk, Second order partial differential equations in Hilbert spaces, London Mathematical Society Lecture Note Series, vol. 293, Cambridge University Press, Cambridge, 2002. MR 1985790, DOI 10.1017/CBO9780511543210
- A. M. Davie and J. G. Gaines, Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations, Math. Comp. 70 (2001), no. 233, 121–134. MR 1803132, DOI 10.1090/S0025-5718-00-01224-2
- Anne de Bouard and Arnaud Debussche, Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim. 54 (2006), no. 3, 369–399. MR 2268663, DOI 10.1007/s00245-006-0875-0
- M. GEISSERT, M. KOVACS, S. LARSSON, Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise, Preprint.
- I. C. GOKHBERG, M. G. KREĬN, Introduction to the theory of linear nonselfadjoint operators in Hilbert space, Amer. Math. Soc., Providence, RI, 1970.
- W. Grecksch and P. E. Kloeden, Time-discretised Galerkin approximations of parabolic stochastic PDEs, Bull. Austral. Math. Soc. 54 (1996), no. 1, 79–85. MR 1402994, DOI 10.1017/S0004972700015094
- István Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I, Potential Anal. 9 (1998), no. 1, 1–25. MR 1644183, DOI 10.1023/A:1008615012377
- István Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II, Potential Anal. 11 (1999), no. 1, 1–37. MR 1699161, DOI 10.1023/A:1008699504438
- István Gyöngy and Annie Millet, On discretization schemes for stochastic evolution equations, Potential Anal. 23 (2005), no. 2, 99–134. MR 2139212, DOI 10.1007/s11118-004-5393-6
- I. GYÖNGY, A. MILLET, Rate of Convergence of Implicit Approximations for stochastic evolution equations, Stochastic Differential Equations: Theory and Applications. A volume in Honor of Professor Boris L. Rosovskii, Interdisciplinary Mathematical Sciences, Vol. 2, World Scientific (2007), 281–310.
- I. GYÖNGY, A. MILLET, Rate of convergence of space time approximations for stochastic evolution equations, Preprint (2007).
- István Gyöngy and David Nualart, Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise, Potential Anal. 7 (1997), no. 4, 725–757. MR 1480861, DOI 10.1023/A:1017998901460
- Erika Hausenblas, Numerical analysis of semilinear stochastic evolution equations in Banach spaces, J. Comput. Appl. Math. 147 (2002), no. 2, 485–516. MR 1933610, DOI 10.1016/S0377-0427(02)00483-1
- Erika Hausenblas, Approximation for semilinear stochastic evolution equations, Potential Anal. 18 (2003), no. 2, 141–186. MR 1953619, DOI 10.1023/A:1020552804087
- Erika Hausenblas, Weak approximation for semilinear stochastic evolution equations, Stochastic analysis and related topics VIII, Progr. Probab., vol. 53, Birkhäuser, Basel, 2003, pp. 111–128. MR 2189620
- Claes Johnson, Stig Larsson, Vidar Thomée, and Lars B. Wahlbin, Error estimates for spatially discrete approximations of semilinear parabolic equations with nonsmooth initial data, Math. Comp. 49 (1987), no. 180, 331–357. MR 906175, DOI 10.1090/S0025-5718-1987-0906175-1
- Peter E. Kloeden and Eckhard Platen, Numerical solution of stochastic differential equations, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992. MR 1214374, DOI 10.1007/978-3-662-12616-5
- Marie-Noëlle Le Roux, Semidiscretization in time for parabolic problems, Math. Comp. 33 (1979), no. 147, 919–931. MR 528047, DOI 10.1090/S0025-5718-1979-0528047-2
- Gabriel J. Lord and Jacques Rougemont, A numerical scheme for stochastic PDEs with Gevrey regularity, IMA J. Numer. Anal. 24 (2004), no. 4, 587–604. MR 2094572, DOI 10.1093/imanum/24.4.587
- Annie Millet and Pierre-Luc Morien, On implicit and explicit discretization schemes for parabolic SPDEs in any dimension, Stochastic Process. Appl. 115 (2005), no. 7, 1073–1106. MR 2147242, DOI 10.1016/j.spa.2005.02.004
- G. N. Milstein, Numerical integration of stochastic differential equations, Mathematics and its Applications, vol. 313, Kluwer Academic Publishers Group, Dordrecht, 1995. Translated and revised from the 1988 Russian original. MR 1335454, DOI 10.1007/978-94-015-8455-5
- G. N. Milstein and M. V. Tretyakov, Stochastic numerics for mathematical physics, Scientific Computation, Springer-Verlag, Berlin, 2004. MR 2069903, DOI 10.1007/978-3-662-10063-9
- Jacques Printems, On the discretization in time of parabolic stochastic partial differential equations, M2AN Math. Model. Numer. Anal. 35 (2001), no. 6, 1055–1078. MR 1873517, DOI 10.1051/m2an:2001148
- Tony Shardlow, Numerical methods for stochastic parabolic PDEs, Numer. Funct. Anal. Optim. 20 (1999), no. 1-2, 121–145. MR 1683281, DOI 10.1080/01630569908816884
- Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1973. MR 443377
- Denis Talay, Probabilistic numerical methods for partial differential equations: elements of analysis, Probabilistic models for nonlinear partial differential equations (Montecatini Terme, 1995) Lecture Notes in Math., vol. 1627, Springer, Berlin, 1996, pp. 148–196. MR 1431302, DOI 10.1007/BFb0093180
- Vidar Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 1997. MR 1479170, DOI 10.1007/978-3-662-03359-3
- Yubin Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal. 43 (2005), no. 4, 1363–1384. MR 2182132, DOI 10.1137/040605278
- Yubin Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise, BIT 44 (2004), no. 4, 829–847. MR 2211047, DOI 10.1007/s10543-004-3755-5
- J. B. Walsh, Finite element methods for parabolic stochastic PDE’s, Potential Anal. 23 (2005), no. 1, 1–43. MR 2136207, DOI 10.1007/s11118-004-2950-y
Bibliographic Information
- Arnaud Debussche
- Affiliation: IRMAR et ENS de Cachan, antenne de Bretagne, Campus de Ker Lann, avenue Robert Schumann, 35170 Bruz, France
- Email: arnaud.debussche@bretagne.ens-cachan.fr
- Jacques Printems
- Affiliation: Laboratoire d’Analyse et de Mathématiques Appliquées, CNRS UMR 8050, Université de Paris XII, 61, avenue du Général de Gaulle, 94010 Créteil, France
- Email: printems@univ-paris12.fr
- Received by editor(s): October 30, 2007
- Received by editor(s) in revised form: May 7, 2008
- Published electronically: October 7, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 845-863
- MSC (2000): Primary 60H15, 60H35, 65C30, 65M60
- DOI: https://doi.org/10.1090/S0025-5718-08-02184-4
- MathSciNet review: 2476562