AMS :: Mathematics of Computation Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the collocation methods for singular integral equations with Hilbert kernel
HTML articles powered by AMS MathViewer

by Jinyuan Du;
Math. Comp. 78 (2009), 891-928
DOI: https://doi.org/10.1090/S0025-5718-08-02182-0
Published electronically: December 10, 2008

Abstract:

In the present paper, we introduce some singular integral operators, singular quadrature operators and discretization matrices of singular integral equations with Hilbert kernel. These results both improve the classical theory of singular integral equations and develop the theory of singular quadrature with Hilbert kernel. Then by using them a unified framework for various collocation methods of numerical solutions of singular integral equations with Hilbert kernel is given. Under the framework, it is very simple and obvious to obtain the coincidence theorem of collocation methods, then the existence and convergence for constructing approximate solutions are also given based on the coincidence theorem.
References
  • Ezio Venturino, Recent developments in the numerical solution of singular integral equations, J. Math. Anal. Appl. 115 (1986), no. 1, 239–277. MR 835600, DOI 10.1016/0022-247X(86)90039-9
  • Lu Jianke, Du Jinyuan, Numerical methods of solution for singular integral equations, Advances in Mathematics, 20(1991), 3, 278–293.
  • David Elliott, The classical collocation method for singular integral equations, SIAM J. Numer. Anal. 19 (1982), no. 4, 816–832. MR 664887, DOI 10.1137/0719057
  • David Elliott, Orthogonal polynomials associated with singular integral equations having a Cauchy kernel, SIAM J. Math. Anal. 13 (1982), no. 6, 1041–1052. MR 674772, DOI 10.1137/0513074
  • David Elliott, A Galerkin-Petrov method for singular integral equations, J. Austral. Math. Soc. Ser. B 25 (1983), no. 2, 261–275. MR 717483, DOI 10.1017/S0334270000004057
  • David Elliott, Rates of convergence for the method of classical collocation for solving singular integral equations, SIAM J. Numer. Anal. 21 (1984), no. 1, 136–148. MR 731218, DOI 10.1137/0721009
  • David Elliott, A convergence theorem for singular integral equations, J. Austral. Math. Soc. Ser. B 22 (1980/81), no. 4, 539–552. MR 626942, DOI 10.1017/S033427000000285X
  • David Elliott, The numerical treatment of singular integral equations—a review, Treatment of integral equations by numerical methods (Durham, 1982) Academic Press, London, 1982, pp. 297–312. MR 755364
  • D. Elliott, Singular integral equations on arc $(-1,1)$: theory and approximate solution, Part 1, Theory, Technical Report No. 218, Dept. of Math., University of Tasmania, Australia, 1987.
  • David Elliott, Projection methods for singular integral equations, J. Integral Equations Appl. 2 (1989), no. 1, 95–106. MR 1033205, DOI 10.1216/JIE-1989-2-1-95
  • Jinyuan Du, Singular integral operators and singular quadrature operators associated with singular integral equations, Acta Math. Sci. (English Ed.) 18 (1998), no. 2, 227–240. MR 1645874, DOI 10.1016/S0252-9602(17)30757-9
  • Jinyuan Du, The collocation methods for singular integral equations with Cauchy kernels, Acta Math. Sci. Ser. B (Engl. Ed.) 20 (2000), no. 3, 289–302. MR 1793202, DOI 10.1016/S0252-9602(17)30636-7
  • Jian Ke Lu, Boundary value problems for analytic functions, Series in Pure Mathematics, vol. 16, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR 1279172
  • N. I. Muskhelishvili, Singulyarnye integral′nye uravneniya, Third, corrected and augmented edition, Izdat. “Nauka”, Moscow, 1968 (Russian). Granichnye zadachi teorii funktsiĭ i nekotorye ikh prilozheniya k matematicheskoĭ fizike. [Boundary value problems in the theory of function and some applications of them to mathematical physics]; With an appendix by B. Bojarski. MR 355495
  • S. Krenk, Numerical quadrature of periodic singular integral equations, J. Inst. Math. Appl. 21 (1978), no. 2, 181–187. MR 483592
  • N. I. Ioakimidis, A natural interpolation formula for the numerical solution of singular integral equations with Hilbert kernel, BIT 23 (1983), no. 1, 92–104. MR 689607, DOI 10.1007/BF01937329
  • Du Jinyuan, On the numerical solution for singular integral equations with Hilbert kernel, Chinese J. Num. Math. & Appl., 11(1989), 2, 9–27.
  • Jin Yuan Du, On the trigonometric polynomials interpolating approximate solutions of singular integral equations with Hilbert kernel, Integral equations and boundary value problems (Beijing, 1990) World Sci. Publ., Teaneck, NJ, 1991, pp. 26–33. MR 1111039
  • Jukka Saranen and Gennadi Vainikko, Periodic integral and pseudodifferential equations with numerical approximation, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1870713, DOI 10.1007/978-3-662-04796-5
  • J. Saranen and L. Schroderus, The modified quadrature method for classical pseudodifferential equations of negative order on smooth closed curves, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 1994, pp. 485–495. MR 1284284, DOI 10.1016/0377-0427(94)90322-0
  • Jin Yuan Du, Singular integral equations with Hilbert kernel and some associated systems of orthogonal trigonometric polynomials, J. Wuhan Univ. Natur. Sci. Ed. 2 (1988), 17–35 (Chinese, with English summary). MR 972923
  • Lu Chien-k’o, On singular integral equations with a Hilbert kernel, Shuxue Jinzhan 8 (1965), 161–167 (Chinese). MR 212522
  • Lu Jianke, General inversion formulas of integrals with Hilbert kernel, J. of Wuhan University, 1(1963), 39–64.
  • Jinyuan Du and Hua Liu, On convergence of trigonometric interpolation for periodic analytic functions, Finite or infinite dimensional complex analysis (Fukuoka, 1999) Lecture Notes in Pure and Appl. Math., vol. 214, Dekker, New York, 2000, pp. 69–76. MR 1771304
  • Jinyuan Du, Huili Han, and Guoxiang Jin, On trigonometric and paratrigonometric Hermite interpolation, J. Approx. Theory 131 (2004), no. 1, 74–99. MR 2103835, DOI 10.1016/j.jat.2004.09.005
  • Jin Yuan Du, Quadrature formulas for singular integrals with Hilbert kernel, J. Comput. Math. 6 (1988), no. 3, 205–225. MR 967882
  • Jinyuan Du, Quadrature formulas of quasi-interpolation type for singular integrals with Hilbert kernel, J. Approx. Theory 93 (1998), no. 2, 231–257. MR 1616777, DOI 10.1006/jath.1998.3166
  • I. J. Schoenberg, Notes on spline functions. I. The limits of the interpolating periodic spline functions as their degree tends to infinity, Indag. Math. 34 (1972), 412–422. Nederl. Akad. Wetensch. Proc. Ser. A 75. MR 316944
  • Peter Linz, A general theory for the approximate solution of operator equations of the second kind, SIAM J. Numer. Anal. 14 (1977), no. 3, 543–554. MR 431665, DOI 10.1137/0714033
  • Jin Yuan Du, Numerical solution methods for singular integral equations. I, Acta Math. Sci. (Chinese) 7 (1987), no. 2, 169–189 (Chinese). MR 943872
  • I. P. Natanson, Constructive function theory, 3vols, F. Ungar, New York, 1964-1965.
  • Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
  • Siegfried Prössdorf and Bernd Silbermann, Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1977 (German). Mit einer englischen und einer russischen Zusammenfassung; Teubner-Texte zur Mathematik. MR 494817
  • Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
Similar Articles
Bibliographic Information
  • Jinyuan Du
  • Affiliation: Department of Mathematics, Wuhan University, Wuhan 430072, People’s Republic of China
  • Email: jydu@whu.edu.cn
  • Received by editor(s): June 20, 2007
  • Received by editor(s) in revised form: May 11, 2008
  • Published electronically: December 10, 2008
  • Additional Notes: This project was supported by NNSF of China (#10471107) and RFDP of Higher Eduction of China (#20060486001).
  • © Copyright 2008 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Math. Comp. 78 (2009), 891-928
  • MSC (2000): Primary 65E05, 65J10, 41A55, 42A10
  • DOI: https://doi.org/10.1090/S0025-5718-08-02182-0
  • MathSciNet review: 2476564