Error analysis for the elastic flow of parametrized curves
HTML articles powered by AMS MathViewer
- by Klaus Deckelnick and Gerhard Dziuk;
- Math. Comp. 78 (2009), 645-671
- DOI: https://doi.org/10.1090/S0025-5718-08-02176-5
- Published electronically: October 17, 2008
- PDF | Request permission
Abstract:
We analyze a semidiscrete numerical scheme for approximating the evolution of parametric curves by elastic flow in $\mathbb {R}^n$. The fourth order equation is split into two coupled second order problems, which are approximated by linear finite elements. We prove error bounds for the resulting scheme and present numerical test calculations that confirm our analysis.References
- John W. Barrett, Harald Garcke, and Robert Nürnberg, A parametric finite element method for fourth order geometric evolution equations, J. Comput. Phys. 222 (2007), no. 1, 441–462. MR 2298053, DOI 10.1016/j.jcp.2006.07.026
- Klaus Deckelnick and Gerhard Dziuk, Error analysis of a finite element method for the Willmore flow of graphs, Interfaces Free Bound. 8 (2006), no. 1, 21–46. MR 2231251, DOI 10.4171/IFB/134
- Klaus Deckelnick, Gerhard Dziuk, and Charles M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numer. 14 (2005), 139–232. MR 2168343, DOI 10.1017/S0962492904000224
- G. Dziuk, Computational parametric Willmore flow, Preprint Fakultät für Mathematik und Physik 07–13 (2007).
- Gerhard Dziuk, Ernst Kuwert, and Reiner Schätzle, Evolution of elastic curves in $\Bbb R^n$: existence and computation, SIAM J. Math. Anal. 33 (2002), no. 5, 1228–1245. MR 1897710, DOI 10.1137/S0036141001383709
- A. Polden, Curves and surfaces of least total curvature and fourth–order flows, Ph.D. dissertation, Universität Tübingen, Tübingen, Germany, 1996.
Bibliographic Information
- Klaus Deckelnick
- Affiliation: Institut für Analysis und Numerik, Otto–von–Guericke–Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- MR Author ID: 318167
- Gerhard Dziuk
- Affiliation: Abteilung für Angewandte Mathematik, Mathematisches Institut, Universität Frei- burg, Hermann–Herder–Str. 10, 79104 Freiburg, Germany
- Received by editor(s): November 5, 2007
- Received by editor(s) in revised form: April 10, 2008
- Published electronically: October 17, 2008
- Additional Notes: This work was supported by the Deutsche Forschungsgemeinschaft via DFG-Forschergruppe 469 Nonlinear partial differential equations: Theoretical and numerical analysis.
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 645-671
- MSC (2000): Primary 35K55, 65M15, 65M60
- DOI: https://doi.org/10.1090/S0025-5718-08-02176-5
- MathSciNet review: 2476555