Non-hyperelliptic modular Jacobians of dimension 3
HTML articles powered by AMS MathViewer
- by Roger Oyono;
- Math. Comp. 78 (2009), 1173-1191
- DOI: https://doi.org/10.1090/S0025-5718-08-02174-1
- Published electronically: September 3, 2008
- PDF | Request permission
Abstract:
We present a method to solve in an efficient way the problem of constructing the curves given by Torelli’s theorem in dimension $3$ over the complex numbers: For an absolutely simple principally polarized abelian threefold $A$ over $\mathbb {C}$ given by its period matrix $\Omega ,$ compute a model of the curve of genus three (unique up to isomorphism) whose Jacobian, equipped with its canonical polarization, is isomorphic to $A$ as a principally polarized abelian variety. We use this method to describe the non-hyperelliptic modular Jacobians of dimension 3. We investigate all the non-hyperelliptic new modular Jacobians $\textrm {Jac}(C_f)$ of dimension $3$ which are isomorphic to $A_f$, where $f\in S_2^\textrm {new}(X_0 (N)),$ $N\leq 4000.$References
- R. Avanzi, N. Thériault, and Z. Wang, Rethinking low genus hyperelliptic Jacobian arithmetic over binary fields: Interplay of field arithmetic and explicit formulae, preprint, 2006.
- Matthew H. Baker, Enrique González-Jiménez, Josep González, and Bjorn Poonen, Finiteness results for modular curves of genus at least 2, Amer. J. Math. 127 (2005), no. 6, 1325–1387. MR 2183527
- Abdolali Basiri, Andreas Enge, Jean-Charles Faugère, and Nicolas Gürel, Implementing the arithmetic of $C_{3,4}$ curves, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 87–101. MR 2137346, DOI 10.1007/978-3-540-24847-7_{6}
- Lucia Caporaso and Edoardo Sernesi, Recovering plane curves from their bitangents, J. Algebraic Geom. 12 (2003), no. 2, 225–244. MR 1949642, DOI 10.1090/S1056-3911-02-00307-7
- C. Diem and E. Thomé, Index calculus in class groups of non-hyperelliptic curves of genus 3, 2006, preprint.
- J. Dixmier, On the projective invariants of quartic plane curves, Adv. in Math. 64 (1987), no. 3, 279–304. MR 888630, DOI 10.1016/0001-8708(87)90010-7
- I. Dolgachev, Topics in classical algebraic geometry, part I, Available on http://www.math.lsa.umich.edu/~idolga/lecturenotes.html, 2003.
- Stéphane Flon and Roger Oyono, Fast arithmetic on Jacobians of Picard curves, Public key cryptography—PKC 2004, Lecture Notes in Comput. Sci., vol. 2947, Springer, Berlin, 2004, pp. 55–68. MR 2095638, DOI 10.1007/978-3-540-24632-9_{5}
- S. Flon, R. Oyono, and C. Ritzenthaler, Fast addition on non-hyperelliptic genus $3$ curves, Preprint, available on http://eprint.iacr.org/2004, 2004.
- Martine Girard and David R. Kohel, Classification of genus 3 curves in special strata of the moduli space, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 346–360. MR 2282935, DOI 10.1007/11792086_{2}5
- Josep González, Jordi Guàrdia, and Victor Rotger, Abelian surfaces of $\textrm {GL}_2$-type as Jacobians of curves, Acta Arith. 116 (2005), no. 3, 263–287. MR 2114780, DOI 10.4064/aa116-3-3
- E. González-Jiménez and R. Oyono, Non-hyperelliptic modular curves of genus $3$, work in progress, 2007.
- Enrique González-Jiménez and Josep González, Modular curves of genus 2, Math. Comp. 72 (2003), no. 241, 397–418. MR 1933828, DOI 10.1090/S0025-5718-02-01458-8
- Enrique González-Jiménez, Josep González, and Jordi Guàrdia, Computations on modular Jacobian surfaces, Algorithmic number theory (Sydney, 2002) Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 189–197. MR 2041083, DOI 10.1007/3-540-45455-1_{1}5
- E. González-Jiménez and J. Guàrdia, MAV, modular abelian varieties for magma, 2001.
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- Jordi Guàrdia, Jacobian nullwerte and algebraic equations, J. Algebra 253 (2002), no. 1, 112–132. MR 1925010, DOI 10.1016/S0021-8693(02)00049-2
- Jordi Guàrdia, Jacobian Nullwerte, periods and symmetric equations for hyperelliptic curves, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 4, 1253–1283 (English, with English and French summaries). MR 2339331, DOI 10.5802/aif.2293
- Everett W. Howe, Plane quartics with Jacobians isomorphic to a hyperelliptic Jacobian, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1647–1657. MR 1814093, DOI 10.1090/S0002-9939-00-05887-1
- G. Humbert, Sur les fonctions abéliennes singulières (deuxieme mémoire), J. Math. Pures Appl. 5(6) (1900), 279–386.
- Herbert Lange, Abelian varieties with several principal polarizations, Duke Math. J. 55 (1987), no. 3, 617–628. MR 904944, DOI 10.1215/S0012-7094-87-05531-1
- D. Lehavi, Bitangents and two level structures for curves of genus $3$, Ph.D. thesis, Hebrew University of Jerusalem, 2002.
- David Lehavi, Any smooth plane quartic can be reconstructed from its bitangents, Israel J. Math. 146 (2005), 371–379. MR 2151609, DOI 10.1007/BF02773542
- A. Logan, The Brauer-Manin obstruction on del Pezzo surfaces of degree $2$ branched along a plane section of a Kummer surface, preprint, 2007.
- Magma, Computational Algebra System, Available on http://magma.maths.usyd.edu.au/magma/.
- T. Ohno, Invariant subring of ternary quartics I - generators and relations, preprint.
- R. Oyono, Arithmetik nicht-hyperelliptischer Kurven des Geschlechts 3 und ihre Anwendung in der Kryptographie, Ph.D. thesis, Essen, 2006.
- Cris Poor, The hyperelliptic locus, Duke Math. J. 76 (1994), no. 3, 809–884. MR 1309334, DOI 10.1215/S0012-7094-94-07634-5
- Ernesto Reinaldo Barreiro, Jorge Estrada Sarlabous, and Jean-Pierre Cherdieu, Efficient reduction on the Jacobian variety of Picard curves, Coding theory, cryptography and related areas (Guanajuato, 1998) Springer, Berlin, 2000, pp. 13–28. MR 1749445
- B. Riemann, Sur la théorie des fonctions abéliennes, Oeuvres de Riemann, 2nd edition (1898), 487.
- C. Ritzenthaler, Problèmes arithmétiques relatifs à certaines familles de courbes sur les corps finis, Ph.D. thesis, Université Paris $7$, 2003.
- Tanush Shaska and Jennifer L. Thompson, On the generic curve of genus 3, Affine algebraic geometry, Contemp. Math., vol. 369, Amer. Math. Soc., Providence, RI, 2005, pp. 233–243. MR 2126664, DOI 10.1090/conm/369/06814
- Goro Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523–544. MR 318162, DOI 10.2969/jmsj/02530523
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original; Kanô Memorial Lectures, 1. MR 1291394
- Tetsuji Shioda, Plane quartics and Mordell-Weil lattices of type $E_7$, Comment. Math. Univ. St. Paul. 42 (1993), no. 1, 61–79. MR 1223188
- Richard Taylor and Andrew Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572. MR 1333036, DOI 10.2307/2118560
- Alexius Maria Vermeulen, Weierstrass points of weight two on curves of genus three, Universiteit van Amsterdam, Amsterdam, 1983. Dissertation, University of Amsterdam, Amsterdam, 1983; With a Dutch summary. MR 715084
- H-J. Weber, Algorithmische Konstruktion hyperelliptischer Kurven mit kryptographischer Relevanz und einem Endomorphismenring echt größer als $\mathbb {Z}$, Ph.D. thesis, Institut für Experimentelle Mathematik Essen, 1997.
- Hermann-Josef Weber, Hyperelliptic simple factors of $J_0(N)$ with dimension at least $3$, Experiment. Math. 6 (1997), no. 4, 273–287. MR 1606908
- André Weil, Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa. 1957 (1957), 33–53 (German). MR 89483
- Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551. MR 1333035, DOI 10.2307/2118559
Bibliographic Information
- Roger Oyono
- Affiliation: Équipe GAATI, Université de Polynésie Française, BP 6570, 98702 Faa’a, Tahiti, Polynésie Française
- Email: roger.oyono@upf.pf
- Received by editor(s): February 5, 2007
- Received by editor(s) in revised form: March 5, 2008
- Published electronically: September 3, 2008
- Additional Notes: The research of this paper was done while the author was a Ph.D. student at the Institut für Experimentelle Mathematik (IEM) of the university of Essen under the supervision of Gerhard Frey
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 1173-1191
- MSC (2000): Primary 14C34, 14G35; Secondary 11G10, 11F11, 14H42
- DOI: https://doi.org/10.1090/S0025-5718-08-02174-1
- MathSciNet review: 2476578