Deriving a new domain decomposition method for the Stokes equations using the Smith factorization
HTML articles powered by AMS MathViewer
- by Victorita Dolean, Frédéric Nataf and Gerd Rapin;
- Math. Comp. 78 (2009), 789-814
- DOI: https://doi.org/10.1090/S0025-5718-08-02172-8
- Published electronically: November 24, 2008
- PDF | Request permission
Abstract:
In this paper the Smith factorization is used systematically to derive a new domain decomposition method for the Stokes problem. In two dimensions the key idea is the transformation of the Stokes problem into a scalar bi-harmonic problem. We show, how a proposed domain decomposition method for the bi-harmonic problem leads to a domain decomposition method for the Stokes equations which inherits the convergence behavior of the scalar problem. Thus, it is sufficient to study the convergence of the scalar algorithm. The same procedure can also be applied to the three-dimensional Stokes problem.
As transmission conditions for the resulting domain decomposition method of the Stokes problem we obtain natural boundary conditions. Therefore it can be implemented easily.
A Fourier analysis and some numerical experiments show very fast convergence of the proposed algorithm. Our algorithm shows a more robust behavior than Neumann-Neumann or FETI type methods.
References
- Yves Achdou, Patrick Le Tallec, Frédéric Nataf, and Marina Vidrascu, A domain decomposition preconditioner for an advection-diffusion problem, Comput. Methods Appl. Mech. Engrg. 184 (2000), no. 2-4, 145–170. Vistas in domain decomposition and parallel processing in computational mechanics. MR 1764189, DOI 10.1016/S0045-7825(99)00227-3
- Mark Ainsworth and Spencer Sherwin, Domain decomposition preconditioners for $p$ and $hp$ finite element approximation of Stokes equations, Comput. Methods Appl. Mech. Engrg. 175 (1999), no. 3-4, 243–266. MR 1702213, DOI 10.1016/S0045-7825(98)00356-9
- Victorita Dolean and Frédéric Nataf, A new domain decomposition method for the compressible Euler equations, M2AN Math. Model. Numer. Anal. 40 (2006), no. 4, 689–703. MR 2274774, DOI 10.1051/m2an:2006026
- Victorita Dolean, Frédéric Nataf, and Gerd Rapin, New constructions of domain decomposition methods for systems of PDEs, C. R. Math. Acad. Sci. Paris 340 (2005), no. 9, 693–696 (English, with English and French summaries). MR 2139279, DOI 10.1016/j.crma.2005.03.026
- V. Dolean, F. Nataf, and G. Rapin. A New Domain Decomposition Method for the Oseen Equations, 2006. In Preperation.
- Ch. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. Internat. J. Numer. Methods Engrg., 32:1205–1227, 1991.
- Luca Gerardo-Giorda, Patrick Le Tallec, and Frédéric Nataf, A Robin-Robin preconditioner for advection-diffusion equations with discontinuous coefficients, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 9-11, 745–764. MR 2037041, DOI 10.1016/j.cma.2003.11.003
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- Roland Glowinski, Yuri A. Kuznetsov, Gérard Meurant, Jacques Périaux, and Olof B. Widlund (eds.), Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1991. MR 1106444
- Pierre Gosselet and Christian Rey, Non-overlapping domain decomposition methods in structural mechanics, Arch. Comput. Methods Engrg. 13 (2006), no. 4, 515–572. MR 2303317, DOI 10.1007/BF02905857
- Jing Li, A dual-primal FETI method for incompressible Stokes equations, Numer. Math. 102 (2005), no. 2, 257–275. MR 2206465, DOI 10.1007/s00211-005-0653-y
- J. Li and O. Widlund. BDDC algorithms for incompressible Stokes equations, 2006. submitted.
- Jan Mandel, Balancing domain decomposition, Comm. Numer. Methods Engrg. 9 (1993), no. 3, 233–241. MR 1208381, DOI 10.1002/cnm.1640090307
- J. Mandel and M. Brezina. Balancing domain decomposition: Theory and performance in two and three dimensions. UCD/CCM report 2, 1993.
- Jan Mandel, Clark R. Dohrmann, and Radek Tezaur, An algebraic theory for primal and dual substructuring methods by constraints, Appl. Numer. Math. 54 (2005), no. 2, 167–193. MR 2148040, DOI 10.1016/j.apnum.2004.09.022
- Frédéric Nataf, Conditions d’interface pour les méthodes de décomposition de domaine pour le système d’Oseen en dimensions $2$ et $3$, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 10, 1155–1160 (French, with English and French summaries). MR 1451940, DOI 10.1016/S0764-4442(97)87904-9
- Frédéric Nataf, A new approach to perfectly matched layers for the linearized Euler system, J. Comput. Phys. 214 (2006), no. 2, 757–772. MR 2216613, DOI 10.1016/j.jcp.2005.10.014
- Frédéric Nataf and Gerd Rapin, Construction of a new domain decomposition method for the Stokes equations, Domain decomposition methods in science and engineering XVI, Lect. Notes Comput. Sci. Eng., vol. 55, Springer, Berlin, 2007, pp. 247–254. MR 2334110, DOI 10.1007/978-3-540-34469-8_{2}7
- F.-C. Otto and G. Lube, A nonoverlapping domain decomposition method for the Oseen equations, Math. Models Methods Appl. Sci. 8 (1998), no. 6, 1091–1117. MR 1646527, DOI 10.1142/S0218202598000500
- F. C. Otto, G. Lube, and L. Müller, An iterative substructuring method for div-stable finite element approximations of the Oseen problem, Computing 67 (2001), no. 2, 91–117. MR 1867355, DOI 10.1007/s006070170009
- S.V. Patankar. Numerical heat transfer and fluid flow. MC Graw-Hill, New York, 1980.
- Luca F. Pavarino and Olof B. Widlund, Balancing Neumann-Neumann methods for incompressible Stokes equations, Comm. Pure Appl. Math. 55 (2002), no. 3, 302–335. MR 1866366, DOI 10.1002/cpa.10020
- Yann-Hervé De Roeck and Patrick Le Tallec, Analysis and test of a local domain-decomposition preconditioner, Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Moscow, 1990) SIAM, Philadelphia, PA, 1991, pp. 112–128. MR 1106455
- E. Ronquist. A domain decomposition solver for the steady Navier-Stokes equations. In A. Ilin and L. Scott, editors, Proc. of ICOSAHOM.95, pages 469–485. Houston Journal of Mathmatics, 1996.
- Youcef Saad and Martin H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986), no. 3, 856–869. MR 848568, DOI 10.1137/0907058
- P. Le Tallec and A. Patra, Non-overlapping domain decomposition methods for adaptive $hp$ approximations of the Stokes problem with discontinuous pressure fields, Comput. Methods Appl. Mech. Engrg. 145 (1997), no. 3-4, 361–379. MR 1456020, DOI 10.1016/S0045-7825(96)01207-8
- Patrick Le Tallec, Jan Mandel, and Marina Vidrascu, A Neumann-Neumann domain decomposition algorithm for solving plate and shell problems, SIAM J. Numer. Anal. 35 (1998), no. 2, 836–867. MR 1618907, DOI 10.1137/S0036142995291019
- Andrea Toselli and Olof Widlund, Domain decomposition methods—algorithms and theory, Springer Series in Computational Mathematics, vol. 34, Springer-Verlag, Berlin, 2005. MR 2104179, DOI 10.1007/b137868
- J. T. Wloka, B. Rowley, and B. Lawruk, Boundary value problems for elliptic systems, Cambridge University Press, Cambridge, 1995. MR 1343490, DOI 10.1017/CBO9780511662850
Bibliographic Information
- Victorita Dolean
- Affiliation: Laboratoire J.A. Dieudonné, CNRS UMR 6621, Université de Nice Sophia-Antipolis, 06108 Nice Cedex 02, France
- Email: dolean@math.unice.fr
- Frédéric Nataf
- Affiliation: Laboratoire J.L. Lions, CNRS UMR 7598, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
- Email: nataf@ann.jussieu.fr
- Gerd Rapin
- Affiliation: Department of Mathematics, NAM, University of Göttingen, D-37083, Germany
- Email: grapin@math.uni-goettingen.de
- Received by editor(s): October 17, 2006
- Received by editor(s) in revised form: October 29, 2007
- Published electronically: November 24, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 789-814
- MSC (2000): Primary 65-xx
- DOI: https://doi.org/10.1090/S0025-5718-08-02172-8
- MathSciNet review: 2476560