A multiscale finite element method for partial differential equations posed in domains with rough boundaries
HTML articles powered by AMS MathViewer
- by Alexandre L. Madureira;
- Math. Comp. 78 (2009), 25-34
- DOI: https://doi.org/10.1090/S0025-5718-08-02159-5
- Published electronically: June 26, 2008
- PDF | Request permission
Abstract:
We propose and analyze a finite element scheme of multiscale type to deal with elliptic partial differential equations posed in domains with rough boundaries. There is no need to assume that the boundary is periodic in any sense, so the method is quite general. On the other hand, if the boundary is periodic we prove convergence of the scheme.References
- Toufic Abboud and Habib Ammari, Diffraction at a curved grating: approximation by an infinite plane grating, J. Math. Anal. Appl. 202 (1996), no. 3, 1076–1100. MR 1408368, DOI 10.1006/jmaa.1996.0361
- Toufic Abboud and Habib Ammari, Diffraction at a curved grating: TM and TE cases, homogenization, J. Math. Anal. Appl. 202 (1996), no. 3, 995–1026. MR 1408364, DOI 10.1006/jmaa.1996.0357
- Yves Achdou, Olivier Pironneau, and Frédéric Valentin, Shape control versus boundary control, Équations aux dérivées partielles et applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, pp. 1–18. MR 1648212
- Yves Achdou, O. Pironneau, and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys. 147 (1998), no. 1, 187–218. MR 1657773, DOI 10.1006/jcph.1998.6088
- Y. Achdou, P. Le Tallec, F. Valentin, and O. Pironneau, Constructing wall laws with domain decomposition or asymptotic expansion techniques, Comput. Methods Appl. Mech. Engrg. 151 (1998), no. 1-2, 215–232. Symposium on Advances in Computational Mechanics, Vol. 3 (Austin, TX, 1997). MR 1625432, DOI 10.1016/S0045-7825(97)00118-7
- Yves Achdou and Olivier Pironneau, Domain decomposition and wall laws, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 5, 541–547 (English, with English and French summaries). MR 1322334, DOI 10.1016/S0045-7825(97)00118-7
- Grégoire Allaire and Micol Amar, Boundary layer tails in periodic homogenization, ESAIM Control Optim. Calc. Var. 4 (1999), 209–243 (English, with English and French summaries). MR 1696289, DOI 10.1051/cocv:1999110
- Youcef Amirat and Olivier Bodart, Numerical approximation of laminar flows over rough walls with sharp asperities, Proceedings of the 10th International Congress on Computational and Applied Mathematics (ICCAM-2002), 2004, pp. 25–38. MR 2056866, DOI 10.1016/S0377-0427(03)00639-3
- Youcef Amirat, Blanca Climent, Enrique Fernández-Cara, and Jacques Simon, The Stokes equations with Fourier boundary conditions on a wall with asperities, Math. Methods Appl. Sci. 24 (2001), no. 5, 255–276. MR 1818895, DOI 10.1002/mma.206
- Y. Amirat, O. Bodart, U. De Maio, and A. Gaudiello, Asymptotic approximation of the solution of the Laplace equation in a domain with highly oscillating boundary, SIAM J. Math. Anal. 35 (2004), no. 6, 1598–1616. MR 2083791, DOI 10.1137/S0036141003414877
- Ivo Babuška, Gabriel Caloz, and John E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal. 31 (1994), no. 4, 945–981. MR 1286212, DOI 10.1137/0731051
- Gabriel R. Barrenechea, Patrick Le Tallec, and Frédéric Valentin, New wall laws for the unsteady incompressible Navier-Stokes equations on rough domains, M2AN Math. Model. Numer. Anal. 36 (2002), no. 2, 177–203. MR 1906814, DOI 10.1051/m2an:2002009
- Arnaud Basson and David Gérard-Varet, Wall laws for fluid flows at a boundary with random roughness, ArXiv:math.AP/0606768v1 (29 Jun 2006).
- Didier Bresch and Vuk Milisic, Higher order boundary layer corrector and wall laws derivation: a unified approach, ArXiv:math.AP/0611083v1 (3 Nov 2006).
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Weinan E and Bjorn Engquist, Multiscale modeling and computation, Notices Amer. Math. Soc. 50 (2003), no. 9, 1062–1070. MR 2002752
- Weinan E and Bjorn Engquist, The heterogeneous multiscale methods, Commun. Math. Sci. 1 (2003), no. 1, 87–132. MR 1979846
- Wei-nan E and Ping-bing Ming, Analysis of multiscale methods, J. Comput. Math. 22 (2004), no. 2, 210–219. Special issue dedicated to the 70th birthday of Professor Zhong-Ci Shi. MR 2058933
- Yalchin R. Efendiev, Thomas Y. Hou, and Xiao-Hui Wu, Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal. 37 (2000), no. 3, 888–910. MR 1740386, DOI 10.1137/S0036142997330329
- Yalchin Efendiev and Alexander Pankov, Numerical homogenization of monotone elliptic operators, Multiscale Model. Simul. 2 (2003), no. 1, 62–79. MR 2044957, DOI 10.1137/S1540345903421611
- Thomas Y. Hou, Numerical approximations to multiscale solutions in partial differential equations, Frontiers in numerical analysis (Durham, 2002) Universitext, Springer, Berlin, 2003, pp. 241–301. MR 2006969
- Thomas Y. Hou and Xiao-Hui Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys. 134 (1997), no. 1, 169–189. MR 1455261, DOI 10.1006/jcph.1997.5682
- Thomas Y. Hou, Xiao-Hui Wu, and Zhiqiang Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp. 68 (1999), no. 227, 913–943. MR 1642758, DOI 10.1090/S0025-5718-99-01077-7
- Thomas Y. Hou, Xiao-Hui Wu, and Yu Zhang, Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation, Commun. Math. Sci. 2 (2004), no. 2, 185–205. MR 2119937
- Alexandre Madureira and Frédéric Valentin, Analysis of curvature influence on effective boundary conditions, C. R. Math. Acad. Sci. Paris 335 (2002), no. 5, 499–504 (English, with English and French summaries). MR 1937121, DOI 10.1016/S1631-073X(02)02493-7
- Alexandre L. Madureira and Frédéric Valentin, Asymptotics of the Poisson problem in domains with curved rough boundaries, SIAM J. Math. Anal. 38 (2006/07), no. 5, 1450–1473. MR 2286014, DOI 10.1137/050633895
- Serge Nicaise and Stefan A. Sauter, Efficient numerical solution of Neumann problems on complicated domains, Calcolo 43 (2006), no. 2, 95–120. MR 2245226, DOI 10.1007/s10092-006-0118-4
- M. Rech, S. Sauter, and A. Smolianski, Two-scale composite finite element method for Dirichlet problems on complicated domains, Numer. Math. 102 (2006), no. 4, 681–708. MR 2207285, DOI 10.1007/s00211-005-0654-x
- H.-G. Roos, M. Stynes, and L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, vol. 24, Springer-Verlag, Berlin, 1996. Convection-diffusion and flow problems. MR 1477665, DOI 10.1007/978-3-662-03206-0
- Giancarlo Sangalli, Capturing small scales in elliptic problems using a residual-free bubbles finite element method, Multiscale Model. Simul. 1 (2003), no. 3, 485–503. MR 2030161, DOI 10.1137/S1540345902411402
- Marcus Sarkis, Private Communication, 2007.
Bibliographic Information
- Alexandre L. Madureira
- Affiliation: Coordenação de Matemática Aplicada e Computacional, Laboratório Nacional de Computação Científica, Av. Getúlio Vargas 333, CEP 25651-070 Petrópolis - RJ, Brazil
- Email: alm@lncc.br
- Received by editor(s): February 12, 2007
- Received by editor(s) in revised form: October 5, 2007
- Published electronically: June 26, 2008
- Additional Notes: The author was partially supported by the CNPq/Brazil Projects 306104/2004-0 and 486026/2006-0, and also by FAPERJ Project APQ1 E-26/170.629/2006.
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 25-34
- MSC (2000): Primary 35J05, 35J25, 65N12, 65N15, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-08-02159-5
- MathSciNet review: 2448695