Convergence and optimality of adaptive mixed finite element methods
HTML articles powered by AMS MathViewer
- by Long Chen, Michael Holst and Jinchao Xu;
- Math. Comp. 78 (2009), 35-53
- DOI: https://doi.org/10.1090/S0025-5718-08-02155-8
- Published electronically: June 30, 2008
- PDF | Request permission
Abstract:
The convergence and optimality of adaptive mixed finite element methods for the Poisson equation are established in this paper. The main difficulty for mixed finite element methods is the lack of minimization principle and thus the failure of orthogonality. A quasi-orthogonality property is proved using the fact that the error is orthogonal to the divergence free subspace, while the part of the error that is not divergence free can be bounded by the data oscillation using a discrete stability result. This discrete stability result is also used to get a localized discrete upper bound which is crucial for the proof of the optimality of the adaptive approximation.References
- A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), no. 4, 385–395. MR 1414415, DOI 10.1007/s002110050222
- Douglas N. Arnold, Differential complexes and numerical stability, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 137–157. MR 1989182
- D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7–32 (English, with French summary). MR 813687, DOI 10.1051/m2an/1985190100071
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Multigrid in $H(\textrm {div})$ and $H(\textrm {curl})$, Numer. Math. 85 (2000), no. 2, 197–217. MR 1754719, DOI 10.1007/PL00005386
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Differential complexes and stability of finite element methods. I. The de Rham complex, Compatible spatial discretizations, IMA Vol. Math. Appl., vol. 142, Springer, New York, 2006, pp. 24–46. MR 2249344, DOI 10.1007/0-387-38034-5
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006), 1–155. MR 2269741, DOI 10.1017/S0962492906210018
- Douglas N. Arnold, L. Ridgway Scott, and Michael Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 2, 169–192 (1989). MR 1007396
- I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math. 44 (1984), no. 1, 75–102. MR 745088, DOI 10.1007/BF01389757
- Constantin Bacuta, James H. Bramble, and Jinchao Xu, Regularity estimates for elliptic boundary value problems in Besov spaces, Math. Comp. 72 (2003), no. 244, 1577–1595. MR 1986794, DOI 10.1090/S0025-5718-02-01502-8
- C. Bacuta, J. H. Bramble, and J. Xu, Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains, J. Numer. Math. 11 (2003), no. 2, 75–94. MR 1987589, DOI 10.1163/156939503766614117
- Randolph E. Bank, Andrew H. Sherman, and Alan Weiser, Refinement algorithms and data structures for regular local mesh refinement, Scientific computing (Montreal, Que., 1982) IMACS Trans. Sci. Comput., I, IMACS, New Brunswick, NJ, 1983, pp. 3–17. MR 751598
- Peter Binev, Wolfgang Dahmen, and Ron DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219–268. MR 2050077, DOI 10.1007/s00211-003-0492-7
- Peter Binev, Wolfgang Dahmen, Ronald DeVore, and Pencho Petrushev, Approximation classes for adaptive methods, Serdica Math. J. 28 (2002), no. 4, 391–416. Dedicated to the memory of Vassil Popov on the occasion of his 60th birthday. MR 1965238
- Peter Binev and Ronald DeVore, Fast computation in adaptive tree approximation, Numer. Math. 97 (2004), no. 2, 193–217. MR 2050076, DOI 10.1007/s00211-003-0493-6
- Pavel Bochev and Max Gunzburger, On least-squares finite element methods for the Poisson equation and their connection to the Dirichlet and Kelvin principles, SIAM J. Numer. Anal. 43 (2005), no. 1, 340–362. MR 2177148, DOI 10.1137/S003614290443353X
- A. Bossavit. Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. Science, Measurement and Technology, IEE Proceedings, 135(8):493–500, Nov 1988.
- D. Braess and R. Verfürth, Multigrid methods for nonconforming finite element methods, SIAM J. Numer. Anal. 27 (1990), no. 4, 979–986. MR 1051117, DOI 10.1137/0727056
- James H. Bramble, Joseph E. Pasciak, and Jinchao Xu, The analysis of multigrid algorithms for nonsymmetric and indefinite elliptic problems, Math. Comp. 51 (1988), no. 184, 389–414. MR 930228, DOI 10.1090/S0025-5718-1988-0930228-6
- J. H. Brandts. Superconvergence phenomena in finite element methods. Ph.D. thesis, Utrecht University, 1994.
- Susanne C. Brenner, A multigrid algorithm for the lowest-order Raviart-Thomas mixed triangular finite element method, SIAM J. Numer. Anal. 29 (1992), no. 3, 647–678. MR 1163350, DOI 10.1137/0729042
- Susanne C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite element methods, Math. Comp. 65 (1996), no. 215, 897–921. MR 1348039, DOI 10.1090/S0025-5718-96-00746-6
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 2nd ed., Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 2002. MR 1894376, DOI 10.1007/978-1-4757-3658-8
- Franco Brezzi, Jim Douglas Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217–235. MR 799685, DOI 10.1007/BF01389710
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- Carsten Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465–476. MR 1408371, DOI 10.1090/S0025-5718-97-00837-5
- Carsten Carstensen and R. H. W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method, Math. Comp. 75 (2006), no. 255, 1033–1042. MR 2219017, DOI 10.1090/S0025-5718-06-01829-1
- J. Manuel Cascon, Ricardo H. Nochetto, and Kunibert G. Siebert, Design and convergence of AFEM in $H(\textrm {div})$, Math. Models Methods Appl. Sci. 17 (2007), no. 11, 1849–1881. MR 2372340, DOI 10.1142/S0218202507002492
- L. Chen. Short implementation of bisection in MATLAB. report, 2006.
- L. Chen and J. Xu. Topics on adaptive finite element methods. In T. Tang and J. Xu, editors, Adaptive Computations: Theory and Algorithms, pages 1–31. Science Press, Beijing, 2007.
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Bernardo Cockburn and Jayadeep Gopalakrishnan, A characterization of hybridized mixed methods for second order elliptic problems, SIAM J. Numer. Anal. 42 (2004), no. 1, 283–301. MR 2051067, DOI 10.1137/S0036142902417893
- Bernardo Cockburn and Jayadeep Gopalakrishnan, Error analysis of variable degree mixed methods for elliptic problems via hybridization, Math. Comp. 74 (2005), no. 252, 1653–1677. MR 2164091, DOI 10.1090/S0025-5718-05-01741-2
- Bernardo Cockburn and Jayadeep Gopalakrishnan, New hybridization techniques, GAMM-Mitt. 28 (2005), no. 2, 154–182. MR 2192479, DOI 10.1002/gamm.201490017
- S. Dahlke, Besov regularity for elliptic boundary value problems in polygonal domains, Appl. Math. Lett. 12 (1999), no. 6, 31–36. MR 1751404, DOI 10.1016/S0893-9659(99)00075-0
- Stephan Dahlke and Ronald A. DeVore, Besov regularity for elliptic boundary value problems, Comm. Partial Differential Equations 22 (1997), no. 1-2, 1–16. MR 1434135, DOI 10.1080/03605309708821252
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- Ricardo G. Durán and Maria Amelia Muschietti, An explicit right inverse of the divergence operator which is continuous in weighted norms, Studia Math. 148 (2001), no. 3, 207–219. MR 1880723, DOI 10.4064/sm148-3-2
- G. J. Fix, M. D. Gunzburger, and R. A. Nicolaides, On mixed finite element methods for first-order elliptic systems, Numer. Math. 37 (1981), no. 1, 29–48. MR 615890, DOI 10.1007/BF01396185
- Gabriel N. Gatica and Matthias Maischak, A posteriori error estimates for the mixed finite element method with Lagrange multipliers, Numer. Methods Partial Differential Equations 21 (2005), no. 3, 421–450. MR 2128589, DOI 10.1002/num.20050
- Jayadeep Gopalakrishnan, A Schwarz preconditioner for a hybridized mixed method, Comput. Methods Appl. Math. 3 (2003), no. 1, 116–134. Dedicated to Raytcho Lazarov. MR 2002260, DOI 10.2478/cmam-2003-0009
- R. Hiptmair, Canonical construction of finite elements, Math. Comp. 68 (1999), no. 228, 1325–1346. MR 1665954, DOI 10.1090/S0025-5718-99-01166-7
- Ralf Hiptmair and Jinchao Xu, Nodal auxiliary space preconditioning in $\textbf {H}(\textbf {curl})$ and $\textbf {H}(\textrm {div})$ spaces, SIAM J. Numer. Anal. 45 (2007), no. 6, 2483–2509. MR 2361899, DOI 10.1137/060660588
- Ronald H. W. Hoppe and Barbara Wohlmuth, Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems, SIAM J. Numer. Anal. 34 (1997), no. 4, 1658–1681. MR 1461801, DOI 10.1137/S0036142994276992
- M. G. Larson and A. Maqvist. A posteriori error estimates for mixed finite element approximations of elliptic problems. Numerische Mathematik, 108 (2008), pp. 487–500.
- Carlo Lovadina and Rolf Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp. 75 (2006), no. 256, 1659–1674. MR 2240629, DOI 10.1090/S0025-5718-06-01872-2
- William F. Mitchell, A comparison of adaptive refinement techniques for elliptic problems, ACM Trans. Math. Software 15 (1989), no. 4, 326–347 (1990). MR 1062496, DOI 10.1145/76909.76912
- William F. Mitchell, Optimal multilevel iterative methods for adaptive grids, SIAM J. Sci. Statist. Comput. 13 (1992), no. 1, 146–167. MR 1145181, DOI 10.1137/0913009
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. MR 1770058, DOI 10.1137/S0036142999360044
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (2002), no. 4, 631–658 (2003). Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488 (electronic); MR1770058 (2001g:65157)]. MR 1980447, DOI 10.1137/S0036144502409093
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Local problems on stars: a posteriori error estimators, convergence, and performance, Math. Comp. 72 (2003), no. 243, 1067–1097. MR 1972728, DOI 10.1090/S0025-5718-02-01463-1
- P. Morin, K. G. Siebert, and A. Veeser. A basic convergence result for conforming adaptive finite elements. Preprint, University of Augsburg, 2007.
- Peter Oswald, Intergrid transfer operators and multilevel preconditioners for nonconforming discretizations, Appl. Numer. Math. 23 (1997), no. 1, 139–158. Multilevel methods (Oberwolfach, 1995). MR 1438084, DOI 10.1016/S0168-9274(96)00065-7
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin-New York, 1977, pp. 292–315. MR 483555
- María-Cecilia Rivara, Design and data structure of fully adaptive, multigrid, finite-element software, ACM Trans. Math. Software 10 (1984), no. 3, 242–264. MR 791990, DOI 10.1145/1271.1274
- María-Cecilia Rivara, Mesh refinement processes based on the generalized bisection of simplices, SIAM J. Numer. Anal. 21 (1984), no. 3, 604–613. MR 744176, DOI 10.1137/0721042
- Torgeir Rusten, Panayot S. Vassilevski, and Ragnar Winther, Interior penalty preconditioners for mixed finite element approximations of elliptic problems, Math. Comp. 65 (1996), no. 214, 447–466. MR 1333325, DOI 10.1090/S0025-5718-96-00720-X
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- E. G. Sewell. Automatic generation of triangulations for piecewise polynomial approximation. In Ph.D. dissertation. Purdue Univ., West Lafayette, Ind., 1972.
- Rob Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. MR 2324418, DOI 10.1007/s10208-005-0183-0
- Rob Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp. 77 (2008), no. 261, 227–241. MR 2353951, DOI 10.1090/S0025-5718-07-01959-X
- R. Verfürth. A review of a posteriori error estimation and adaptive mesh refinement tecniques. B. G. Teubner, 1996.
- Barbara I. Wohlmuth and Ronald H. W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp. 68 (1999), no. 228, 1347–1378. MR 1651760, DOI 10.1090/S0025-5718-99-01125-4
Bibliographic Information
- Long Chen
- Affiliation: Department of Mathematics, University of California at Irvine, Irvine, California 92697
- MR Author ID: 735779
- Email: chenlong@math.uci.edu
- Michael Holst
- Affiliation: Department of Mathematics, University of California at San Diego, La Jolla, California 92093
- MR Author ID: 358602
- Email: mholst@math.ucsd.edu
- Jinchao Xu
- Affiliation: The School of Mathematical Science, Peking University, and Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16801
- MR Author ID: 228866
- Email: xu@math.psu.edu
- Received by editor(s): April 3, 2006
- Received by editor(s) in revised form: November 21, 2007
- Published electronically: June 30, 2008
- Additional Notes: The first two authors were supported in part by NSF Awards 0411723 and 022560, in part by DOE Awards DE-FG02-04ER25620 and DE-FG02-05ER25707, and in part by NIH Award P41RR08605.
The third author was supported in part by NSF DMS-0619587, DMS-0609727, NSFC-10528102 and the Alexander Humboldt foundation. - © Copyright 2008 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 35-53
- MSC (2000): Primary 65N12, 65N15, 65N30, 65N50, 65Y20
- DOI: https://doi.org/10.1090/S0025-5718-08-02155-8
- MathSciNet review: 2448696