Superharmonic numbers
HTML articles powered by AMS MathViewer
- by Graeme L. Cohen;
- Math. Comp. 78 (2009), 421-429
- DOI: https://doi.org/10.1090/S0025-5718-08-02147-9
- Published electronically: September 5, 2008
- PDF | Request permission
Abstract:
Let $\tau (n)$ denote the number of positive divisors of a natural number $n>1$ and let $\sigma (n)$ denote their sum. Then $n$ is superharmonic if $\sigma (n)\mid n^k\tau (n)$ for some positive integer $k$. We deduce numerous properties of superharmonic numbers and show in particular that the set of all superharmonic numbers is the first nontrivial example that has been given of an infinite set that contains all perfect numbers but for which it is difficult to determine whether there is an odd member.References
- R. P. Brent, G. L. Cohen, and H. J. J. te Riele, Improved techniques for lower bounds for odd perfect numbers, Math. Comp. 57 (1991), no. 196, 857–868. MR 1094940, DOI 10.1090/S0025-5718-1991-1094940-3
- Hugh M. W. Edgar and David Callan, Problems and Solutions: Solutions: 6616, Amer. Math. Monthly 99 (1992), no. 8, 783–789. MR 1542194, DOI 10.2307/2324253
- G. L. Cohen and Deng Moujie, On a generalisation of Ore’s harmonic numbers, Nieuw Arch. Wisk. (4) 16 (1998), no. 3, 161–172. MR 1680101
- Mariano Garcia, On numbers with integral harmonic mean, Amer. Math. Monthly 61 (1954), 89–96. MR 59291, DOI 10.2307/2307792
- T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comp. 73 (2004), no. 245, 475–491. MR 2034133, DOI 10.1090/S0025-5718-03-01554-0
- Hans-Joachim Kanold, Über das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann. 133 (1957), 371–374 (German). MR 89219, DOI 10.1007/BF01342887
- Pace P. Nielsen, Odd perfect numbers have at least nine distinct prime factors, Math. Comp. 76 (2007), no. 260, 2109–2126. MR 2336286, DOI 10.1090/S0025-5718-07-01990-4
- Oystein Ore, On the averages of the divisors of a number, Amer. Math. Monthly 55 (1948), 615–619. MR 27292, DOI 10.2307/2305616
- C. Pomerance, On a problem of Ore: Harmonic numbers, unpublished manuscript (1973).
- Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 2nd ed., Cours Spécialisés [Specialized Courses], vol. 1, Société Mathématique de France, Paris, 1995 (French). MR 1366197
Bibliographic Information
- Graeme L. Cohen
- Affiliation: Department of Mathematical Sciences, University of Technology, Sydney, Broadway, NSW 2007, Australia
- Address at time of publication: 1201/95 Brompton Road, Kensington, NSW 2033, Australia
- Email: g.cohen@bigpond.net.au
- Received by editor(s): April 12, 2007
- Received by editor(s) in revised form: January 22, 2008
- Published electronically: September 5, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 421-429
- MSC (2000): Primary 11A25, 11Y70
- DOI: https://doi.org/10.1090/S0025-5718-08-02147-9
- MathSciNet review: 2448714