Explicit factors of some iterated resultants and discriminants
HTML articles powered by AMS MathViewer
- by Laurent Busé and Bernard Mourrain;
- Math. Comp. 78 (2009), 345-386
- DOI: https://doi.org/10.1090/S0025-5718-08-02111-X
- Published electronically: April 16, 2008
- PDF | Request permission
Abstract:
In this paper, the result of applying iterative univariate resultant constructions to multivariate polynomials is analyzed. We consider the input polynomials as generic polynomials of a given degree and exhibit explicit decompositions into irreducible factors of several constructions involving two times iterated univariate resultants and discriminants over the integer universal ring of coefficients of the entry polynomials. Cases involving from two to four generic polynomials and resultants or discriminants in one of their variables are treated. The decompositions into irreducible factors we get are obtained by exploiting fundamental properties of the univariate resultants and discriminants and induction on the degree of the polynomials. As a consequence, each irreducible factor can be separately and explicitly computed in terms of a certain multivariate resultant. With this approach, we also obtain as direct corollaries some results conjectured by Collins (1975) and McCallum (1999, 2001 preprint) which correspond to the case of polynomials whose coefficients are themselves generic polynomials in other variables. Finally, a geometric interpretation of the algebraic factorization of the iterated discriminant of a single polynomial is detailled.References
- F. Apéry and J.-P. Jouanolou, Élimination: le cas d’une variable, Hermann, Collection Méthodes, 2006.
- V. Arnold, A. Varchenko, and S. M Gusein-Zade, Singularités des applications différentiables, Edition Mir, Moscou, 1986.
- Saugata Basu, Richard Pollack, and Marie-Françoise Roy, Algorithms in real algebraic geometry, Algorithms and Computation in Mathematics, vol. 10, Springer-Verlag, Berlin, 2003. MR 1998147, DOI 10.1007/978-3-662-05355-3
- E. Bézout, Théorie Générale des Équations Algébriques, Paris: Ph.D. Pierres, 1779.
- L. Busé, M. Elkadi, and B. Mourrain, Resultant over the residual of a complete intersection, J. Pure Appl. Algebra 164 (2001), no. 1-2, 35–57. Effective methods in algebraic geometry (Bath, 2000). MR 1854329, DOI 10.1016/S0022-4049(00)00144-4
- Laurent Busé, Mohamed Elkadi, and Bernard Mourrain, Using projection operators in computer aided geometric design, Topics in algebraic geometry and geometric modeling, Contemp. Math., vol. 334, Amer. Math. Soc., Providence, RI, 2003, pp. 321–342. MR 2039979, DOI 10.1090/conm/334/05988
- L. Busé, Étude du résultant sur une variété algébrique, Ph.D. thesis, Université de Nice Sophia Antipolis, 2001.
- Laurent Busé, Resultants of determinantal varieties, J. Pure Appl. Algebra 193 (2004), no. 1-3, 71–97. MR 2076379, DOI 10.1016/j.jpaa.2004.02.010
- George E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, Automata theory and formal languages (Second GI Conf., Kaiserslautern, 1975) Lecture Notes in Comput. Sci., Vol. 33, Springer, Berlin-New York, 1975, pp. 134–183. MR 403962
- M. Coste, An introduction to semi-algebraic geometry, RAAG network school, 2002.
- David Cox, John Little, and Donal O’Shea, Using algebraic geometry, Graduate Texts in Mathematics, vol. 185, Springer-Verlag, New York, 1998. MR 1639811, DOI 10.1007/978-1-4757-6911-1
- Carlos D’Andrea, Macaulay style formulas for sparse resultants, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2595–2629. MR 1895195, DOI 10.1090/S0002-9947-02-02910-0
- Ioannis Z. Emiris and John F. Canny, Efficient incremental algorithms for the sparse resultant and the mixed volume, J. Symbolic Comput. 20 (1995), no. 2, 117–149. MR 1374227, DOI 10.1006/jsco.1995.1041
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417, DOI 10.1007/978-0-8176-4771-1
- Robert M. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Invent. Math. 38 (1976/77), no. 3, 207–217. MR 454051, DOI 10.1007/BF01403128
- O. Henrici, On certain formulæ concerning the theory of discriminants, Proc. of London Math. Soc. (1868), 104–116.
- —, On the singularities of curves envelopes, Proc. of London Math. Soc. (1869), 177–195.
- J.-P. Jouanolou, Le formalisme du résultant, Adv. Math. 90 (1991), no. 2, 117–263 (French). MR 1142904, DOI 10.1016/0001-8708(91)90031-2
- Jean-Pierre Jouanolou, Résultant anisotrope, compléments et applications, Electron. J. Combin. 3 (1996), no. 2, Research Paper 2, approx. 91 (French). The Foata Festschrift. MR 1392487, DOI 10.37236/1260
- J. P. Jouanolou, Formes d’inertie et résultant: un formulaire, Adv. Math. 126 (1997), no. 2, 119–250 (French). MR 1442307, DOI 10.1006/aima.1996.1609
- Wolfgang Krull, Funktionaldeterminanten und Diskriminanten bei Polynomen in mehreren Unbestimmten, Monatsh. Math. Phys. 48 (1939), 353–368 (German). MR 609, DOI 10.1007/BF01696191
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- D. Lazard and S. McCallum, Iterated discriminants, preprint presented at the MEGA’2007 conference, 2007.
- F.S. Macaulay, Some formulae in elimination, Proc. London Math. Soc. 1 (1902), no. 33, 3–27.
- Dinesh Manocha and John F. Canny, Implicit representation of rational parametric surfaces, J. Symbolic Comput. 13 (1992), no. 5, 485–510. MR 1170093, DOI 10.1016/S0747-7171(10)80008-2
- John N. Mather, Generic projections, Ann. of Math. (2) 98 (1973), 226–245. MR 362393, DOI 10.2307/1970783
- Scott McCallum, Factors of iterated resultants and discriminants, J. Symbolic Comput. 27 (1999), no. 4, 367–385. MR 1681345, DOI 10.1006/jsco.1998.0257
- —, Repeated discriminants, Preprint of Macquarie University, December 10, 2001.
- B. Mourrain and J.P. Técourt, Isotopic meshing of a real algebraic surface, Technical Report 5508, INRIA Sophia Antipolis, 2005.
- O.A. Platonova, Projection of smooth surfaces, J. of Mathematical Sciences 35 (1986), no. 6, 2796–2808.
- B. L. Van der Waerden, Modern algebra. Vol. II, New-York, Frederick Ungar Publishing Co., 1948.
- Hassler Whitney, On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane, Ann. of Math. (2) 62 (1955), 374–410. MR 73980, DOI 10.2307/1970070
Bibliographic Information
- Laurent Busé
- Affiliation: GALAAD, INRIA, B.P. 93, 06902 Sophia Antipolis, France
- Email: Laurent.Buse@inria.fr
- Bernard Mourrain
- Affiliation: GALAAD, INRIA, B.P. 93, 06902 Sophia Antipolis, France
- MR Author ID: 309750
- Email: mourrain@sophia.inria.fr
- Received by editor(s): December 19, 2006
- Received by editor(s) in revised form: November 10, 2007
- Published electronically: April 16, 2008
- Additional Notes: This work was first presented at the conference in honor of Jean-Pierre Jouanolou, held at Luminy, Marseille, May 15–19, 2006
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 345-386
- MSC (2000): Primary 13P05
- DOI: https://doi.org/10.1090/S0025-5718-08-02111-X
- MathSciNet review: 2448711
Dedicated: Dedicated to Professor Jean-Pierre Jouanolou