High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems
HTML articles powered by AMS MathViewer
- by Manuel Castro, José M. Gallardo and Carlos Parés;
- Math. Comp. 75 (2006), 1103-1134
- DOI: https://doi.org/10.1090/S0025-5718-06-01851-5
- Published electronically: March 21, 2006
- HTML | PDF | Request permission
Abstract:
This paper is concerned with the development of high order methods for the numerical approximation of one-dimensional nonconservative hyperbolic systems. In particular, we are interested in high order extensions of the generalized Roe methods introduced by I. Toumi in 1992, based on WENO reconstruction of states. We also investigate the well-balanced properties of the resulting schemes. Finally, we will focus on applications to shallow-water systems.References
- N. Andrianov, CONSTRUCT: a collection of MATLAB routines for constructing the exact solution to the Riemann problem for the shallow water equations, avalaible at http://www-ian.math.unimagdeburg.de/home/andriano/CONSTRUCT.
- Alfredo Bermudez and Ma. Elena Vazquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. & Fluids 23 (1994), no. 8, 1049–1071. MR 1314237, DOI 10.1016/0045-7930(94)90004-3
- François Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004. MR 2128209, DOI 10.1007/b93802
- V. Caselles, R. Donat and G. Haro, Flux-gradient and source term balancing for certain high resolution shock-capturing schemes, submitted.
- Manuel Castro, Jorge Macías, and Carlos Parés, A $Q$-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system, M2AN Math. Model. Numer. Anal. 35 (2001), no. 1, 107–127. MR 1811983, DOI 10.1051/m2an:2001108
- Tomás Chacón Rebollo, Antonio Domínguez Delgado, and Enrique D. Fernández Nieto, A family of stable numerical solvers for the shallow water equations with source terms, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 1-2, 203–225. MR 1951407, DOI 10.1016/S0045-7825(02)00551-0
- Tomás Chacón Rebollo, Antonio Domínguez Delgado, and Enrique D. Fernández Nieto, An entropy-correction free solver for non-homogeneous shallow water equations, M2AN Math. Model. Numer. Anal. 37 (2003), no. 5, 755–772. MR 2020863, DOI 10.1051/m2an:2003043
- T. Chacón, E.D. Fernández, M.J. Castro and C. Parés, On well-balanced finite volume methods for non-homogeneous non-conservative hyperbolic systems. Preprint, 2005.
- A. Chinnaya and A.Y. LeRoux, A new general Riemann solver for the shallow-water equations with friction and topography, available at http://www.math.ntnu.no/ conservation/1999/021.html.
- A. Chinnaya and A.Y. LeRoux, A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: the resonance phenomenon. To appear in Int. J. Finite Volume, 2004.
- G. Dal Maso, Ph. LeFloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995), 483–548.
- E.D. Fernández Nieto, Aproximación Numérica de Leyes de Conservación Hiperbólicas No Homogéneas. Aplicación a las Ecuaciones de Aguas Someras. Ph.D. thesis, Universidad de Sevilla, 2003.
- A. C. Fowler, Mathematical models in the applied sciences, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1997. MR 1483893
- P. García-Navarro and M.E. Vázquez-Cendón, On numerical treatment of the source terms in the shallow water equations. Comp. & Fluids 29(8) (2000), 17–45.
- G. Godinaud, A.Y. LeRoux and M.N. LeRoux, Generation of new solvers involving the source term for a class of nonhomogeneous hyperbolic systems, available at http://www.math.ntnu.no/conservation/2000/029.html.
- Edwige Godlewski and Pierre-Arnaud Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. MR 1410987, DOI 10.1007/978-1-4612-0713-9
- L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Comput. Math. Appl. 39 (2000), no. 9-10, 135–159. MR 1753567, DOI 10.1016/S0898-1221(00)00093-6
- Laurent Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Math. Models Methods Appl. Sci. 11 (2001), no. 2, 339–365. MR 1820677, DOI 10.1142/S021820250100088X
- Sigal Gottlieb and Chi-Wang Shu, Total variation diminishing Runge-Kutta schemes, Math. Comp. 67 (1998), no. 221, 73–85. MR 1443118, DOI 10.1090/S0025-5718-98-00913-2
- N. Goutal and F. Maurel, Proceedings of the Second Workshop on Dam-Break Wave Simulation, Technical Report HE-43/97/016/A, Electrité de France, Département Laboratoire National d’Hydraulique, Groupe Hydraulique Fluviale, 1997.
- J. M. Greenberg and A. Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 1–16. MR 1377240, DOI 10.1137/0733001
- J. M. Greenberg, A. Y. Leroux, R. Baraille, and A. Noussair, Analysis and approximation of conservation laws with source terms, SIAM J. Numer. Anal. 34 (1997), no. 5, 1980–2007. MR 1472206, DOI 10.1137/S0036142995286751
- Guang-Shan Jiang and Chi-Wang Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996), no. 1, 202–228. MR 1391627, DOI 10.1006/jcph.1996.0130
- Ami Harten and James M. Hyman, Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, J. Comput. Phys. 50 (1983), no. 2, 235–269. MR 707200, DOI 10.1016/0021-9991(83)90066-9
- Randall J. LeVeque, Numerical methods for conservation laws, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1990. MR 1077828, DOI 10.1007/978-3-0348-5116-9
- Randall J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, J. Comput. Phys. 146 (1998), no. 1, 346–365. MR 1650496, DOI 10.1006/jcph.1998.6058
- Xu-Dong Liu, Stanley Osher, and Tony Chan, Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115 (1994), no. 1, 200–212. MR 1300340, DOI 10.1006/jcph.1994.1187
- Carlos Parés and Manuel Castro, On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems, M2AN Math. Model. Numer. Anal. 38 (2004), no. 5, 821–852. MR 2104431, DOI 10.1051/m2an:2004041
- B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, Calcolo 38 (2001), no. 4, 201–231. MR 1890353, DOI 10.1007/s10092-001-8181-3
- Benoît Perthame and Chiara Simeoni, Convergence of the upwind interface source method for hyperbolic conservation laws, Hyperbolic problems: theory, numerics, applications, Springer, Berlin, 2003, pp. 61–78. MR 2053160
- P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (1981), no. 2, 357–372. MR 640362, DOI 10.1016/0021-9991(81)90128-5
- J. Shi, C. Hu and C.-W. Shu, A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175 (2002), 108–127.
- Chi-Wang Shu and Stanley Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988), no. 2, 439–471. MR 954915, DOI 10.1016/0021-9991(88)90177-5
- C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, ICASE Report 97-65, 1997.
- E. F. Toro and M. E. Vazquez-Cendon, Model hyperbolic systems with source terms: exact and numerical solutions, Godunov methods (Oxford, 1999) Kluwer/Plenum, New York, 2001, pp. 941–948. MR 1963646
- I. Toumi, A weak formulation of Roe’s approximate Riemann solver, J. Comput. Phys. 102 (1992), no. 2, 360–373. MR 1187694, DOI 10.1016/0021-9991(92)90378-C
- María Elena Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J. Comput. Phys. 148 (1999), no. 2, 497–526. MR 1669644, DOI 10.1006/jcph.1998.6127
- Senka Vukovic and Luka Sopta, ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations, J. Comput. Phys. 179 (2002), no. 2, 593–621. MR 1911377, DOI 10.1006/jcph.2002.7076
- Yulong Xing and Chi-Wang Shu, High order finite difference WENO schemes with the exact conservation property for the shallow water equations, J. Comput. Phys. 208 (2005), no. 1, 206–227. MR 2144699, DOI 10.1016/j.jcp.2005.02.006
Bibliographic Information
- Manuel Castro
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071-Málaga, Spain
- Email: castro@anamat.cie.uma.es
- José M. Gallardo
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071-Málaga, Spain
- Email: gallardo@anamat.cie.uma.es
- Carlos Parés
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071-Málaga, Spain
- Email: pares@anamat.cie.uma.es
- Received by editor(s): November 30, 2004
- Received by editor(s) in revised form: May 20, 2005
- Published electronically: March 21, 2006
- Additional Notes: This research has been partially supported by the Spanish Government Research project BFM2003-07530-C02-02
- © Copyright 2006
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 75 (2006), 1103-1134
- MSC (2000): Primary 65M06, 35L65; Secondary 76M12, 76B15
- DOI: https://doi.org/10.1090/S0025-5718-06-01851-5
- MathSciNet review: 2219021