Modular exponentiation via the explicit Chinese remainder theorem
HTML articles powered by AMS MathViewer
- by Daniel J. Bernstein and Jonathan P. Sorenson;
- Math. Comp. 76 (2007), 443-454
- DOI: https://doi.org/10.1090/S0025-5718-06-01849-7
- Published electronically: September 14, 2006
Abstract:
Fix pairwise coprime positive integers $p_1,p_2,\dots ,p_s$. We propose representing integers $u$ modulo $m$, where $m$ is any positive integer up to roughly $\sqrt {p_1p_2\cdots p_s}$, as vectors $(u\bmod p_1,u\bmod p_2,\dots ,u\bmod p_s)$. We use this representation to obtain a new result on the parallel complexity of modular exponentiation: there is an algorithm for the Common CRCW PRAM that, given positive integers $x$, $e$, and $m$ in binary, of total bit length $n$, computes $x^e\bmod m$ in time $O(n/{\lg \lg n})$ using $n^{O(1)}$ processors. For comparison, a parallelization of the standard binary algorithm takes superlinear time; Adleman and Kompella gave an $O((\lg n)^3)$ expected time algorithm using $\exp ( O(\sqrt {n\lg n}))$ processors; von zur Gathen gave an NC algorithm for the highly special case that $m$ is polynomially smooth.References
- Leonard M. Adleman, Kireeti Kompella, Proceedings of the $20$th ACM symposium on theory of computing, Association for Computing Machinery, New York, 1988.
- —, Using smoothness to achieve parallelism, in [1] (1988), 528–538.
- Amod Agashe, Kristin Lauter, and Ramarathnam Venkatesan, Constructing elliptic curves with a known number of points over a prime field, High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun., vol. 41, Amer. Math. Soc., Providence, RI, 2004, pp. 1–17. MR 2075643
- Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004), no. 2, 781–793. MR 2123939, DOI 10.4007/annals.2004.160.781
- Paul W. Beame, Stephen A. Cook, and H. James Hoover, Log depth circuits for division and related problems, SIAM J. Comput. 15 (1986), no. 4, 994–1003. MR 861365, DOI 10.1137/0215070
- Daniel J. Bernstein, Detecting perfect powers in essentially linear time, and other studies in computational number theory, Ph.D. thesis, University of California at Berkeley, 1995.
- Daniel J. Bernstein, Multidigit modular multiplication with the explicit Chinese remainder theorem, in [6] (1995). URL: http://cr.yp.to/papers.html#mmecrt.
- Daniel J. Bernstein, Fast multiplication and its applications, to appear. URL: http://cr.yp. to/papers.html#multapps. ID 8758803e61822d485d54251b27b1a20d.
- Daniel J. Bernstein, Pippenger’s exponentiation algorithm, to be incorporated into author’s High-speed cryptography book. URL: http://cr.yp.to/papers.html#pippenger.
- A. Borodin and R. Moenck, Fast modular transforms, J. Comput. System Sci. 8 (1974), 366–386. MR 371144, DOI 10.1016/S0022-0000(74)80029-2
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Richard Cole and Uzi Vishkin, Faster optimal parallel prefix sums and list ranking, Inform. and Comput. 81 (1989), no. 3, 334–352. MR 1000070, DOI 10.1016/0890-5401(89)90036-9
- Jean-Marc Couveignes, Computing a square root for the number field sieve, in [19] (1993), 95–102.
- Shawna Meyer Eikenberry and Jonathan P. Sorenson, Efficient algorithms for computing the Jacobi symbol, J. Symbolic Comput. 26 (1998), no. 4, 509–523. MR 1646683, DOI 10.1006/jsco.1998.0226
- John H. Reif (ed.), Synthesis of parallel algorithms, Morgan Kaufmann, San Mateo, CA, 1993. MR 1212591
- Daniel M. Gordon, A survey of fast exponentiation methods, J. Algorithms 27 (1998), no. 1, 129–146. MR 1613189, DOI 10.1006/jagm.1997.0913
- Richard M. Karp (chairman), $13$th annual symposium on switching and automata theory, IEEE Computer Society, Northridge, 1972.
- Donald E. Knuth, The art of computer programming, volume $2$: seminumerical algorithms, 3rd edition, Addison-Wesley, Reading, 1997. ISBN 0-201-89684-2.
- A. K. Lenstra and H. W. Lenstra Jr. (eds.), The development of the number field sieve, Lecture Notes in Mathematics, vol. 1554, Springer-Verlag, Berlin, 1993. MR 1321216, DOI 10.1007/BFb0091534
- Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of applied cryptography, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 1997. With a foreword by Ronald L. Rivest. MR 1412797
- A. Borodin and R. Moenck, Fast modular transforms, J. Comput. System Sci. 8 (1974), 366–386. MR 371144, DOI 10.1016/S0022-0000(74)80029-2
- Peter L. Montgomery, An FFT extension of the elliptic curve method of factorization, Ph.D. thesis, University of California at Los Angeles, 1992. URL: http://cr.yp.to/bib/entries.html#1992/montgomery.
- Peter L. Montgomery and Robert D. Silverman, An FFT extension to the $P-1$ factoring algorithm, Math. Comp. 54 (1990), no. 190, 839–854. MR 1011444, DOI 10.1090/S0025-5718-1990-1011444-3
- Andrew M. Odlyzko, Gary Walsh, Hugh Williams (editors), Conference on the mathematics of public key cryptography: the Fields Institute for Research in the Mathematical Sciences, Toronto, Ontario, June $12$–$17, 1999$, book of preprints distributed at the conference, 1999.
- Christos H. Papadimitriou, Computational complexity, Addison-Wesley Publishing Company, Reading, MA, 1994. MR 1251285
- John H. Reif (ed.), Synthesis of parallel algorithms, Morgan Kaufmann, San Mateo, CA, 1993. MR 1212591
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971), 281–292 (German, with English summary). MR 292344, DOI 10.1007/bf02242355
- Jonathan P. Sorenson, A sublinear-time parallel algorithm for integer modular exponentiation, in [24] (1999).
- Jonathan Sorenson and Ian Parberry, Two fast parallel prime number sieves, Inform. and Comput. 114 (1994), no. 1, 115–130. MR 1294306, DOI 10.1006/inco.1994.1082
- Larry Stockmeyer and Uzi Vishkin, Simulation of parallel random access machines by circuits, SIAM J. Comput. 13 (1984), no. 2, 409–422. MR 739997, DOI 10.1137/0213027
- John H. Reif (ed.), Synthesis of parallel algorithms, Morgan Kaufmann, San Mateo, CA, 1993. MR 1212591
- Alf van der Poorten and Andreas Stein (eds.), High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Institute Communications, vol. 41, American Mathematical Society, Providence, RI, 2004. Selected papers from the International Conference on Number Theory held in Banff, AB, May 24–30, 2003. MR 2070919, DOI 10.1090/fic/041
- John H. Reif (ed.), Synthesis of parallel algorithms, Morgan Kaufmann, San Mateo, CA, 1993. MR 1212591
- Joachim von zur Gathen, Computing powers in parallel, SIAM J. Comput. 16 (1987), no. 5, 930–945. MR 908877, DOI 10.1137/0216060
Bibliographic Information
- Daniel J. Bernstein
- Affiliation: Department of Mathematics, Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago, Chicago, IL 60607–7045
- Email: djb@cr.yp.to
- Jonathan P. Sorenson
- Affiliation: Department of Computer Science and Software Engineering, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208
- MR Author ID: 334195
- Email: sorenson@butler.edu
- Received by editor(s): August 18, 2003
- Received by editor(s) in revised form: June 15, 2005
- Published electronically: September 14, 2006
- Additional Notes: This paper combines and improves the preliminary papers [Multidigit modular multiplication with the explicit Chinese remainder theorem] by Bernstein and [A sublinear-time parallel algorithm for integer modular exponentiation] by Sorenson. Bernstein was supported by the National Science Foundation under grants DMS-9600083 and DMS–9970409. Sorenson was supported by the National Science Foundation under grant CCR–9626877. Sorenson completed part of this work while on sabbatical at Purdue University in Fall 1998.
- © Copyright 2006 by the authors
- Journal: Math. Comp. 76 (2007), 443-454
- MSC (2000): Primary 11Y16; Secondary 68W10
- DOI: https://doi.org/10.1090/S0025-5718-06-01849-7
- MathSciNet review: 2261030