Abstract
Over the past several decades, electron and scanning probe microscopes have become critical components of condensed matter physics, materials science and chemistry research. At the same time, the infrastructure for establishing a connection between microscopy observations and materials behaviour over a broader parameter space is lacking. Here we introduce AtomAI, an open-source software package bridging instrument-specific Python libraries, deep learning and simulation tools into a single ecosystem. AtomAI allows direct applications of deep neural networks for atomic and mesoscopic image segmentation converting image and spectroscopy data into class-based local descriptors for downstream tasks such as statistical and graph analysis. For atomically resolved imaging data, the output is types and positions of atomic species, with an option for subsequent refinement. AtomAI further allows the implementation of a broad range of image and spectrum analysis functions, including invariant variational autoencoders for disentangling structural factors of variation and im2spec type of encoder–decoder models for mapping structure–property relationships. Finally, our framework allows seamless connection to the first principles modelling with a Python interface on the inferred atomic positions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All data pertinent to this manuscript can be accessed online at https://github.com/pycroscopy/atomai or https://doi.org/10.5281/zenodo.6406276 (ref. 135).
Code availability
The source code and example notebooks are available https://github.com/pycroscopy/atomai or at https://doi.org/10.5281/zenodo.6406276 (ref. 135).
References
Pennycook, S. J. Seeing the atoms more clearly: STEM imaging from the Crewe era to today. Ultramicroscopy 123, 28–37 (2012).
Pennycook, S. J. & Nellist, P. D. Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, 2011).
Dellby, N., Krivanek, O. L., Nellist, P. D., Batson, P. E. & Lupini, A. R. Progress in aberration-corrected scanning transmission electron microscopy. J. Electron Microsc. 50, 177–185 (2001).
Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).
Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).
Ardenne, M. V. & Elektronen-Rastermikroskop, Das Praktische Ausführung. Z. Tech. Phys. 19, 407–416 (1938).
Ardenne, M. V. & Elektronen-Rastermikroskop, Das Theoretische Grundlagen. Zeit. Physik 109, 553–572 (1938).
Knoll, M. & Ruska, E. Das Elektronenmikroskop. Zeit. Physik 78, 318–339 (1932).
Ruska, E. The development of the electron-microscope and of electron-microscopy. Rev. Mod. Phys. 59, 627–638 (1987).
Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7×7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120–123 (1983).
Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).
Garcia, R. & Perez, R. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002).
Gruverman, A., Auciello, O., Ramesh, R. & Tokumoto, H. Scanning force microscopy of domain structure in ferroelectric thin films: imaging and control. Nanotechnology 8, A38–A43 (1997).
Martin, Y. & Wickramasinghe, H. K. Magnetic imaging by force microscopy with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457 (1987).
Vatel, O. & Tanimoto, M. Kelvin probe force microscopy for potential distribution measurement of semiconductor-devices. J. Appl. Phys. 77, 2358–2362 (1995).
Nonnenmacher, M., Oboyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991).
Liu, X. et al. Visualizing broken symmetry and topological defects in a quantum Hall ferromagnet. Science 375, 321–326 (2022).
Rajeswari, J. et al. Filming the formation and fluctuation of skyrmion domains by cryo-Lorentz transmission electron microscopy. Proc. Natl Acad. Sci. USA 112, 14212–14217 (2015).
Kohno, Y., Seki, T., Findlay, S. D., Ikuhara, Y. & Shibata, N. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature 602, 234–239 (2022).
Shibata, N. et al. Electric field imaging of single atoms. Nat. Commun. 8, 7 (2017).
Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–U64 (2009).
Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).
Kourkoutis, L. F., Plitzko, J. M. & Baumeister, W. Electron microscopy of biological materials at the nanometer scale. Annu. Rev. Mater. Res. 42, 33–58 (2012).
Dufrêne, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017).
MacLaren, I., Macgregor, T. A., Allen, C. S. & Kirkland, A. I. Detectors—the ongoing revolution in scanning transmission electron microscopy and why this important to material characterization. APL Mater. 8, 110901 (2020).
Taheri, M. L. et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170, 86–95 (2016).
Krivanek, O. L.; Dellby, N.; Spence, A. J.; Camps, R. A.; Brown, L. M. in Electron Microscopy and Analysis 1997 (ed. Rodenburg, J. M.) 35–40 (CRC Press, 1997).
Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).
Varela, M. et al. Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004).
Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).
Browning, N. D. et al. The atomic origins of reduced critical currents at 001 tilt grain boundaries in YBa2Cu3O7-delta thin films. Physica C 294, 183–193 (1998).
Guo, X. & Waser, R. Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog. Mater Sci. 51, 151–210 (2006).
McMorran, B. J. et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011).
Grillo, V. et al. Generation of nondiffracting electron bessel beams. Phys. Rev. X 4, 011013 (2014).
Rusz, J. & Bhowmick, S. Boundaries for efficient use of electron vortex beams to measure magnetic properties. Phys. Rev. Lett. 111, 105504 (2013).
Idrobo, J. C. et al. Temperature measurement by a nanoscale electron probe using energy gain and loss spectroscopy. Phys. Rev. Lett. 120, 095901 (2018).
Cho, S. H. et al. Spectrally tunable infrared plasmonic F,Sn:In2O3 nanocrystal cubes. J. Chem. Phys. 152, 014709 (2020).
Senga, R. et al. Position and momentum mapping of vibrations in graphene nanostructures. Nature 573, 247–250 (2019).
Egerton, R. F. Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575–586 (2007).
Jiang, Y. et al. Electron ptychography of 2D materials to deep sub-angstrom resolution. Nature 559, 343–349 (2018).
Yang, Y. S. et al. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542, 75–79 (2017).
Jia, C. L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007).
Jia, C. L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008).
Chisholm, M. F., Luo, W. D., Oxley, M. P., Pantelides, S. T. & Lee, H. N. Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 105, 197602 (2010).
MacLaren, I. & Ramasse, Q. M. Aberration-corrected scanning transmission electron microscopy for atomic-resolution studies of functional oxides. Int. Mater. Rev. 59, 115–131 (2014).
Jia, C. L. et al. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B. 29, 081405 (2009).
Borisevich, A. et al. Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4, 6071–6079 (2010).
Kim, Y. M. et al. Interplay of octahedral tilts and polar order in BiFeO3 films. Adv. Mater. 25, 2497–2504 (2013).
He, Q. et al. Towards 3D mapping of BO6 octahedron rotations at perovskite heterointerfaces, unit cell by unit cell. ACS Nano 9, 8412–8419 (2015).
Nord, M. et al. Three-dimensional subnanoscale imaging of unit cell doubling due to octahedral tilting and cation modulation in strained perovskite thin films. Phys. Rev. Mater. 3, 063605 (2019).
Kim, Y. M. et al. Direct observation of ferroelectric field effect and vacancy-controlled screening at the BiFeO3/LaxSr1-xMnO3 interface. Nat. Mater. 13, 1019–1025 (2014).
Borisevich, A. Y. et al. Interface dipole between two metallic oxides caused by localized oxygen vacancies. Phys. Rev. B. 86, 140102 (2012).
Yankovich, A. B. et al. Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat. Commun. 5, 4155 (2014).
Vlcek, L. et al. Learning from imperfections: predicting structure and thermodynamics from atomic imaging of fluctuations. ACS Nano 13, 718–727 (2019).
Vlcek, L., Maksov, A., Pan, M. H., Vasudevan, R. K. & Kahnin, S. V. Knowledge extraction from atomically resolved images. Acs Nano 11, 10313–10320 (2017).
Lin, W. Z. et al. Local crystallography analysis for atomically resolved scanning tunneling microscopy images. Nanotechnology. 24, 415707 (2013).
Gai, Z. et al. Chemically induced Jahn–Teller ordering on manganite surfaces. Nat. Commun. 5, 4528 (2014).
Ovchinnikov, O. S., Jesse, S., Bintacchit, P., Trolier-McKinstry, S. & Kalinin, S. V. Disorder identification in hysteresis data: recognition analysis of the random-bond-random-field Ising model. Phys. Rev. Lett. 103, 157203 (2009).
Kumar, A. et al. Spatially resolved mapping of disorder type and distribution in random systems using artificial neural network recognition. Phys. Rev. B 84, 024203 (2011).
Nikiforov, M. P. et al. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response. Nanotechnology 20, 405708 (2009).
Wahl, P., Singh, U. R., Tsurkan, V. & Loidl, A. Nanoscale electronic inhomogeneity in FeSe0.4 Te0.6 revealed through unsupervised machine learning. Phys. Rev. B 101, 115112 (2020).
Rashidi, M. & Wolkow, R. A. Autonomous scanning probe microscopy in situ tip conditioning through machine learning. ACS Nano 12, 5185–5189 (2018).
Croshaw, J., Dienel, T., Huff, T. & Wolkow, R. Atomic defect classification of the H–Si (100) surface through multi-mode scanning probe microscopy. Beilstein J. Nanotechnol. 11, 1346–1360 (2020).
Jesse, S. & Kalinin, S. V. Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. Nanotechnology 20, 085714 (2009).
Bosman, M., Watanabe, M., Alexander, D. T. L. & Keast, V. J. Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 1024–1032 (2006).
Allen, L. J. et al. in Electron Microscopy and Multiscale Modeling, Proceedings (eds. Avilov, A. S., Dudarev, S. L. & Marks, L. D.) 32–46 (Am. Inst. Phys., 2008).
Kannan, R. et al. Deep data analysis via physically constrained linear unmixing: universal framework, domain examples, and a community-wide platform. Adv. Struct. Chem. Imag. 4, 6 (2018).
Vasudevan, R. K., Ziatdinov, M., Jesse, S. & Kalinin, S. V. Phases and interfaces from real space atomically resolved data: physics-based deep data image analysis. Nano Lett. 16, 5574–5581 (2016).
Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. In eds. Wallach, H. et al. Advances in Neural Information Processing Systems 8026–8037 (NeurIPS, 2019).
Buitinck, L. et al. API design for machine learning software: experiences from the scikit-learn project. Preprint at arXiv https://doi.org/10.48550/arXiv.1309.0238 (2013).
Ziatdinov, M., Nelson, C., Vasudevan, R. K., Chen, D. Y. & Kalinin, S. V. Building ferroelectric from the bottom up: the machine learning analysis of the atomic-scale ferroelectric distortions. Appl. Phys. Lett. 115, 05902 (2019).
Kalinin, S. V., Dyck, O., Jesse, S. & Ziatdinov, M. Exploring order parameters and dynamic processes in disordered systems via variational autoencoders. Sci. Adv. 7, eabd5084 (2021).
Ziatdinov, M., Jesse, S., Sumpter, B. G., Kalinin, S. V. & Dyck, O. Tracking atomic structure evolution during directed electron beam induced Si-atom motion in graphene via deep machine learning. Nanotechnology 32, 035703 (2020).
Ghosh, A., Sumpter, B. G., Dyck, O., Kalinin, S. V. & Ziatdinov, M. Ensemble learning and iterative training (ELIT) machine learning: applications towards uncertainty quantification and automated experiment in atom-resolved microscopy. Npj Comput. Mater. 7, 1-8 (2021).
Ziatdinov, M., Fuchs, U., Owen, J. H., Randall, J. N. & Kalinin, S. V. Robust multi-scale multi-feature deep learning for atomic and defect identification in scanning tunneling microscopy on H-Si (100) 2×1 surface. Preprint at arXiv https://doi.org/10.48550/arXiv.2002.04716 (2020).
Kalinin, S. V., Steffes, J. J., Huey, B. D. & Ziatdinov, M. Disentangling ferroelectric domain wall geometries and pathways in dynamic piezoresponse force microscopy via unsupervised machine learning. Nanotechnology 33, 055707 (2021).
Ignatans, R. et al. Latent mechanisms of polarization switching from in situ electron microscopy observations. Adv. Funct. Mater. 32, 2100271 https://doi.org/10.1002/adfm.202100271 (2022).
Kalinin, S. V. et al. Lab on a beam—big data and artificial intelligence in scanning transmission electron microscopy. MRS Bull. 44, 565–575 (2019).
de la Peña, F. et al. Microanalysis, electron microscopy (big and small) data analysis with the open source software package HyperSpy. Microsc. Microanal. 23, 214–215 (2017).
Somnath, S., Smith, C. R., Laanait, N., Vasudevan, R. K. & Jesse, S. USID and pycroscopy–open source frameworks for storing and analyzing imaging and spectroscopy data. Microsc. Microanal. 25, 220–221 (2019).
Mukherjee, D. STEMTool. GitHub Repository https://github.com/pycroscopy/stemtool (2020).
Duscher, G. pyTEMlib. GitHub Repository https://github.com/pycroscopy/pyTEMlib (2020).
Johnstone, D. pyxem. GitHub Repository (2022). https://pyxem.github.io/pyxem/pyxem
Clausen, A. et al. LiberTEM: software platform for scalable multidimensional data processing in transmission electron microscopy. J. Open Source Softw. 5, 2006 (2020).
Savitzky, B. H. et al. py4DSTEM: open source software for 4D-STEM data analysis. Microsc. Microanal. 25, 124–125 (2019).
Allen, L. J., D׳Alfonso, A. J. & Findlay, S. D. Modelling the inelastic scattering of fast electrons. Ultramicroscopy 151, 11–22 (2015).
Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density along Dislocations. PhD thesis (Arizona State University, 2002).
Madsen, J. & Susi, T. abTEM: ab initio transmission electron microscopy image simulation. Microsc. Microanal. 26, 448–450 (2020).
Lobato, I. & Van Dyck, D. MULTEM: a new multislice program to perform accurate and fast electron diffraction and imaging simulations using graphics processing units with CUDA. Ultramicroscopy 156, 9–17 (2015).
Oelerich, J. O. et al. STEMsalabim: a high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens. Ultramicroscopy 177, 91–96 (2017).
Pryor, A., Ophus, C. & Miao, J. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy. Adv. Struct. Chem. Imag. 3, 15 (2017).
Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).
Garcia, A. et al. Siesta: recent developments and applications. J. Chem. Phys. 152, 204108 (2020).
al, P. G. E. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
al, P. G. E. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
al, P. G. E. Quantum ESPRESSO toward the exascale. J. Chem. Phys. 152, 154105 (2020).
al, T. D. K. E. CP2K: an electronic structure and molecular dynamics software package—Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).
Permann, C. J. et al. MOOSE: enabling massively parallel multiphysics simulation. SoftwareX 11, 100430 (2020).
Guido, D. The Finite Element Method for Three-Dimensional Thermomechanical Applications (John Wiley & Sons, 2004).
Thompson, A.P. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022). https://lammps.sandia.gov/
Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).
K. C. Koppenhoefer et al. WARP3D: Dynamic Nonlinear Analysis of Solids Using a Preconditioned Conjugate Gradient Software Architecture (Univ. Illinois at Urbana Champaign, 1994).
Malinen, M. & Råback, P. Elmer finite element solver for multiphysics and multiscale problems. Appl. Mater. Sci. 19, 101–113 (2013).
Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S. Models, algorithms and validation for opensource DEM and CFD-DEM. Prog. Comput. Fluid Dyn. 12, 140–152 (2012).
DeLano, W. L., DeLano & Warren, L. Pymol: an open-source molecular graphics tool. CCP4 Newslett. Protein Crystallogr. 40, 82–92 (2002).
Hirel, P. Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys, Comm. 197, 212–219 (2015).
Izumi, K. M. A. F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Ahrens, J., Geveci, B. & Law, C. ParaView: An End-User Tool for Large Data Visualization, Visualization Handbook (Elsevier, 2015).
Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. Packmol: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).
Hanwell, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 4, 1–17 (2012).
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).
Utkarsh, A. The Paraview Guide: A Parallel Visulaization Application (Kitware, 2015).
Humphrey, W., Dalke, A. & Schulten, K. VMD—Visual Molecular Dynamics. J. Molec. Graphics 14, 33–38 (1996).
Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Hicks, D. et al. The AFLOW Library of Crystallographic Prototypes: part 2. Comp. Mat. Sci. 161, S1–S1011 (2019).
Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: The Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).
Mehl, M. J. et al. The AFLOW Library of Crystallographic Prototypes: part 1. Comp. Mat. Sci. 136, S1–S828 (2017).
Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 1, 1-15 (2015).
Scheffler, C. D. A. M. The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).
Ronneberger, O.; Fischer, P.; Brox, T. in eds. Navab, N. et al. International Conference on Medical Image Computing and Computer-Assisted Intervention 234–241 (Springer, 2015).
Ziatdinov, M., Dyck, O., Jesse, S. & Kalinin, S. V. Atomic mechanisms for the Si atom dynamics in graphene: chemical transformations at the edge and in the bulk. Adv. Funct. Mater. 29, 1904480 (2019).
Farley, S. et al. Improving the segmentation of scanning probe microscope images using convolutional neural networks. Mach. Learn. Sci. Technol. 2, 015015 (2020).
Xie, S. & Tu, Z. Holistically-nested edge detection. In ed. O'Conner, L. Proc. IEEE International Conference on Computer Vision 1395–1403 (IEEE, 2015).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In ed. O'Conner, L. Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
Badrinarayanan, V., Kendall, A. & Cipolla, R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. 39, 2481–2495 (2017).
Kalinin, S. V., Kelley, K., Vasudevan, R. K. & Ziatdinov, M. Toward decoding the relationship between domain structure and functionality in ferroelectrics via hidden latent variables. ACS Appl. Mater. Interfaces 13, 1693–1703 (2021).
Roccapriore, K. M., Ziatdinov, M., Cho, S. H., Hachtel, J. A. & Kalinin, S. V. Predictability of localized plasmonic responses in nanoparticle assemblies. Small, 17, 2100181 (2021).
Gordon, O. M., Hodgkinson, J. E. A., Farley, S. M., Hunsicker, E. L. & Moriarty, P. J. Automated searching and identification of self-organized nanostructures. Nano Lett. 20, 7688–7693 (2020).
Wilson, A. G. & Izmailov, P. Bayesian deep learning and a probabilistic perspective of generalization. In eds. Larochelle, H. et al. Proc. 34th International Conference on Neural Information Processing Systems, 4697-4708, (Curran Assoc. Inc., 2020).
Kingma, D. P. & Welling, M. An introduction to variational autoencoders. Found. Trends Mach. Learn. 12, 307–392 (2019).
Lakshminarayanan, B.; Pritzel, A.; Blundell, C., Simple and scalable predictive uncertainty estimation using deep ensembles. In eds. von Luxburg, U. et al. Proc. 31st International Conference on Neural Information Processing Systems 6405–6416 (Curran Assoc. Inc., 2017).
Gordon, O. et al. Scanning tunneling state recognition with multi-class neural network ensembles. Rev. Sci. Instrum. 90, 103704 (2019).
Ziatdinov, M. et al. Predictability as a probe of manifest and latent physics: the case of atomic scale structural, chemical, and polarization behaviors in multiferroic Sm-doped BiFeO3. Appl. Phys. Rev. 8, 011403 (2021).
Vasudevan, R. K. et al. Autonomous experiments in scanning probe microscopy and spectroscopy: choosing where to explore polarization dynamics in ferroelectrics. ACS Nano. 15, 11253-11262 https://doi.org/10.1021/acsnano.0c10239 (2021).
Ziatdinov, M. pycroscopy/atomai: v0.7.4. Zenodo https://doi.org/10.5281/zenodo.6406276 (2022).
Somnath, S., Duscher, G., Ziatdinov, M., Vasudevan, R. & Valleti, M. SIDpy. GitHub Repository https://doi.org/10.5281/zenodo.4679761 (2021).
Ziatdinov, M. et al. Quantifying the dynamics of protein self-organization using deep learning analysis of atomic force microscopy data. Nano Lett. 21, 158–165 (2021).
Kalinin, S. V. et al. Disentangling rotational dynamics and ordering transitions in a system of self-organizing protein nanorods via rotationally invariant latent representations. ACS Nano 15, 6471–6480 (2021).
Ziatdinov, M. et al. Building and exploring libraries of atomic defects in graphene: scanning transmission electron and scanning tunneling microscopy study. Sci. Adv. 5, eaaw8989 (2019).
Ghosh, A., Ziatdinov, M., Dyck, O., Sumpter, B. G. & Kalinin, S. V. Bridging microscopy with molecular dynamics and quantum simulations: an atomAI based pipeline. NPJ Comput. Mater. 8, 1-11 (2022).
Acknowledgements
This effort was performed and partially supported (M.Z.) at the Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences (CNMS), a US Department of Energy, Office of Science User Facility, and by US Department of Energy, Office of Science, Office of Basic Energy Sciences Data, Artificial Intelligence and Machine Learning at DOE Scientific User Facilities programme under the Digital Twin Project (award number 34532) (A.G.) and MLExchange Project (award number 107514) (C.Y.W. and S.V.K.) The authors gratefully acknowledge multiple discussions with M. Chisholm, A. Lupini, M. Oxley, K. Roccapriore, J. Hachtel, O. Dyck and multiple other colleagues at Oak Ridge National Laboratory whose advice and beta testing have been instrumental throughout the development of AtomAI from 2019 to 2021 and its predecessor AICrystallographer in 2016–2019. The authors also express their deep gratitude to C. Ophus (LBNL), S. Spurgeon (PNNL), F. de la Peña (University of Lille), D. Weber (Juelich) and I. Maclaren (Glasgow University) for critical reading of the manuscript, suggesting several key references and suggesting improvement of key figures.
Author information
Authors and Affiliations
Contributions
M.Z. wrote the AtomAI package and led paper writing. A.G. wrote utility functions for connecting theory to AtomAI and contributed to manuscript writing. C.Y.W. tested the ensemble models and contributed to manuscript writing. S.V.K. performed extensive beta testing of AtomAI features, provided extensive suggestions and feedback, and contributed to manuscript writing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial or non-financial interests.
Peer review
Peer review information
Nature Machine Intelligence thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Supplementary information
Supplementary Information
Supplementary Figs. 1–4 and discussion (Supplementary Notes 1–6 and Supplementary Table 1).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ziatdinov, M., Ghosh, A., Wong, C.Y.(. et al. AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy. Nat Mach Intell 4, 1101–1112 (2022). https://doi.org/10.1038/s42256-022-00555-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42256-022-00555-8
This article is cited by
-
Reusability report: Deep learning-based analysis of images and spectroscopy data with AtomAI
Nature Machine Intelligence (2025)
-
Physics and chemistry from parsimonious representations: image analysis via invariant variational autoencoders
npj Computational Materials (2024)
-
Exploring electron-beam induced modifications of materials with machine-learning assisted high temporal resolution electron microscopy
npj Computational Materials (2024)
-
Designing nanotheranostics with machine learning
Nature Nanotechnology (2024)
-
Unsupervised machine learning and cepstral analysis with 4D-STEM for characterizing complex microstructures of metallic alloys
npj Computational Materials (2024)