The transformational role of GPU computing and deep learning in drug discovery | Nature Machine Intelligence
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The transformational role of GPU computing and deep learning in drug discovery

Abstract

Deep learning has disrupted nearly every field of research, including those of direct importance to drug discovery, such as medicinal chemistry and pharmacology. This revolution has largely been attributed to the unprecedented advances in highly parallelizable graphics processing units (GPUs) and the development of GPU-enabled algorithms. In this Review, we present a comprehensive overview of historical trends and recent advances in GPU algorithms and discuss their immediate impact on the discovery of new drugs and drug targets. We also cover the state-of-the-art of deep learning architectures that have found practical applications in both early drug discovery and consequent hit-to-lead optimization stages, including the acceleration of molecular docking, the evaluation of off-target effects and the prediction of pharmacological properties. We conclude by discussing the impacts of GPU acceleration and deep learning models on the global democratization of the field of drug discovery that may lead to efficient exploration of the ever-expanding chemical universe to accelerate the discovery of novel medicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CADD workflow.
Fig. 2: Parallelization of DL architectures in single- and multi-GPU environments.
Fig. 3: Timeline of the complexity of biological systems that could be simulated with molecular dynamics.
Fig. 4: Architectures of several popular neural networks.

Similar content being viewed by others

References

  1. Stone, J. E. et al. Accelerating molecular modeling applications with graphics processors. J. Comput. Chem. 28, 2618–2640 (2007).

    Article  Google Scholar 

  2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). This Review article succinctly captures key areas of DL and the most popular architectural paradigms used across domains and modalities.

    Article  Google Scholar 

  3. ROCm, a New Era in Open GPU Computing (AMD Corporation, 2021); https://rocm.github.io/rocncloc.html

  4. Shafie Khorassani, K. et al. Designing a ROCm-aware MPI library for AMD GPUs: early experiences. In High Performance Computing Lecture Notes in Computer Science Vol. 12728 (eds. Chamberlain, B. L., Varbanescu, A.-L., Ltaief, H. & Luszczek, P.) 118–136 (Springer, 2021).

  5. AMD Instinct MI Series Accelerators (AMD Corporation, 2021); https://www.amd.com/en/graphics/instinct-server-accelerators

  6. NVIDIA A100 Tensor Core GPU (NVIDIA Corporation, 2021); https://www.nvidia.com/en-us/data-center/a100/

  7. Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).

    Article  Google Scholar 

  8. Harvey, M. J. & De Fabritiis, G. High-throughput molecular dynamics: the powerful new tool for drug discovery. Drug Discov. Today 17, 1059–1062 (2012).

    Article  Google Scholar 

  9. Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

    Article  Google Scholar 

  10. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  11. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  Google Scholar 

  12. Nyland, L. et al. Achieving scalable parallel molecular dynamics using dynamic spatial domain decomposition techniques. J. Parallel Distrib. Comput. 47, 125–138 (1997).

    Article  Google Scholar 

  13. Phillips, J. C. et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 44130 (2020).

    Article  Google Scholar 

  14. Abel, R., Wang, L., Harder, E. D., Berne, B. J. & Friesner, R. A. Advancing drug discovery through enhanced free energy calculations. Acc. Chem. Res. 50, 1625–1632 (2017).

    Article  Google Scholar 

  15. Yoo, P. et al. Neural network reactive force field for C, H, N, and O systems. NPJ Comput. Mater. 7, 9 (2021).

    Article  Google Scholar 

  16. Zubatyuk, R., Smith, J.S., Leszczynski, J. & Isayev, O. Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network. Sci. Adv. 5, eaav6490 (2021).

    Article  Google Scholar 

  17. Wang, L. et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J. Am. Chem. Soc. 137, 2695–2703 (2015).

    Article  Google Scholar 

  18. Devereux, C. et al. Extending the applicability of the ANI deep learning molecular potential to sulfur and halogens. J. Chem. Theory Comput. 16, 4192–4202 (2020).

    Article  Google Scholar 

  19. Noé, F., Tkatchenko, A., Müller, K. R. & Clementi, C. Machine learning for molecular simulation. Ann. Rev. Phys. Chem. 71, 361–390 (2020).

    Article  Google Scholar 

  20. Ribeiro, J. M. L., Bravo, P., Wang, Y. & Tiwary, P. Reweighted autoencoded variational Bayes for enhanced sampling (RAVE). J. Chem. Phys. 149, 72301 (2018).

    Article  Google Scholar 

  21. Lamim Ribeiro, J. M. & Tiwary, P. Toward achieving efficient and accurate ligand-protein unbinding with deep learning and molecular dynamics through RAVE. J. Chem. Theory Comput. 15, 708–719 (2019).

    Article  Google Scholar 

  22. Smith, Z., Ravindra, P., Wang, Y., Cooley, R. & Tiwary, P. Discovering protein conformational flexibility through artificial-intelligence-aided molecular dynamics. J. Phys. Chem. B 124, 8221–8229 (2020).

    Article  Google Scholar 

  23. Drew Bennett, W. F. et al. Predicting small molecule transfer free energies by combining molecular dynamics simulations and deep learning. J. Chem. Inf. Model. 60, 5375–5381 (2020).

    Article  Google Scholar 

  24. von Lilienfeld, O. A. Quantum machine learning in chemical compound space. Angew. Chem. Int. Ed. 57, 4164–4169 (2018).

    Article  Google Scholar 

  25. Gao, X., Ramezanghorbani, F., Isayev, O., Smith, J. S. & Roitberg, A. E. TorchANI: a free and open source PyTorch-based deep learning implementation of the ANI neural network potentials. J. Chem. Inf. Model. 60, 3408–3415 (2020).

    Article  Google Scholar 

  26. Doerr, S. et al. TorchMD: a deep learning framework for molecular simulations. J. Chem. Theory Comput. 17, 2355–2363 (2021).

    Article  Google Scholar 

  27. Lahey, S. L. J. & Rowley, C. N. Simulating protein-ligand binding with neural network potentials. Chem. Sci. 11, 2362–2368 (2020).

    Article  Google Scholar 

  28. Vingelmann, P. & Fitzek, F. H. P. CUDA release 10.2.89 (NVIDIA, 2020).

  29. Stone, J. E., Gohara, D. & Shi, G. OpenCL: a parallel programming standard for heterogeneous computing systems. Comput. Sci. Eng. 12, 66–72 (2010).

    Article  Google Scholar 

  30. Ufimtsev, I. S. & Martínez, T. J. Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation. J. Chem. Theory Comput. 4, 222–231 (2008).

    Article  Google Scholar 

  31. Asadchev, A. & Gordon, M. S. New multithreaded hybrid CPU/GPU approach to Hartree–Fock. J. Chem. Theory Comput. 8, 4166–4176 (2012).

    Article  Google Scholar 

  32. Seritan, S. et al. TeraChem: a graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 11, e1494 (2021).

    Article  Google Scholar 

  33. Yu, J. K., Liang, R., Liu, F. & Martínez, T. J. First-principles characterization of the elusive I fluorescent state and the structural evolution of retinal protonated Schiff base in bacteriorhodopsin. J. Am. Chem. Soc. 141, 18193–18203 (2019).

    Article  Google Scholar 

  34. Ehrlich, S., Göller, A. H. & Grimme, S. Towards full quantum-mechanics-based protein-ligand binding affinities. ChemPhysChem 18, 898–905 (2017).

    Article  Google Scholar 

  35. Kowalski, K. et al. From NWChem to NWChemEx: evolving with the computational chemistry landscape. Chem. Rev. 121, 4962–4998 (2021).

    Article  Google Scholar 

  36. Banerjee, S. et al. 2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351, 871–875 (2016).

    Article  Google Scholar 

  37. Matsumoto, S. et al. Extraction of protein dynamics information from cryo-EM maps using deep learning. Nat. Mach. Intell. 3, 153–160 (2021).

    Article  Google Scholar 

  38. Al-Azzawi, A. et al. DeepCryoPicker: fully automated deep neural network for single protein particle picking in cryo-EM. BMC Bioinform. 21, 509 (2020).

    Article  Google Scholar 

  39. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    Article  Google Scholar 

  40. Markoff, J. Scientists see advances in deep learning a part of artificial intelligence. New York Times (23 November 2012).

  41. Dahl, G. E., Jaitly, N. & Salakhutdinov, R. Multi-task neural networks for QSAR predictions. Preprint at https://arxiv.org/abs/1406.1231 (2014). Inspired by the winning solution of the Merck QSAR competition, this work used neural networks to predict activities of compounds for multiple assays. This was a pivotal work in popularizing DL in drug discovery.

  42. Yang, M. et al. Linking drug target and pathway activation for effective therapy using multi-task learning. Sci. Rep. 8, 18322 (2018).

    Google Scholar 

  43. Lee, K. & Kim, D. In-silico molecular binding prediction for human drug targets using deep neural multi-task learning. Genes 10, 906 (2019).

    Article  Google Scholar 

  44. Tan, M. Prediction of anti-cancer drug response by kernelized multi-task learning. Artif. Intell. Med. 73, 70–77 (2016).

    Article  Google Scholar 

  45. Yuan, H., Paskov, I., Paskov, H., González, A. J. & Leslie, C. S. Multitask learning improves prediction of cancer drug sensitivity. Sci. Rep. 6, 31619 (2016).

    Article  Google Scholar 

  46. Simões, R. S., Maltarollo, V. G., Oliveira, P. R. & Honorio, K. M. Transfer and multi-task learning in QSAR modeling: advances and challenges. Front. Pharmacol. 9, 74 (2018).

    Article  Google Scholar 

  47. Burki, T. A new paradigm for drug development. Lancet Digit. Heal. 2, e226–e227 (2020).

    Article  Google Scholar 

  48. AI-discovered novel antifibrotic drug goes first-in-human. Insilico Medicine https://insilico.com/blog/fih (30 November 2021).

  49. Richardson, P. et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 395, e30 (2020).

    Article  Google Scholar 

  50. Ruppert, D. The elements of statistical learning: data mining, inference, and prediction. J. Am. Stat. Assoc. 99, 567–567 (2004).

    Article  MathSciNet  Google Scholar 

  51. Aoyama, T., Suzuki, Y. & Ichikawa, H. Neural networks applied to structure-activity relationships. J. Med. Chem. 33, 905–908 (1990).

    Article  Google Scholar 

  52. Bertoni, M. et al. Bioactivity descriptors for uncharacterized chemical compounds. Nat. Commun. 12, 3932 (2021). The generation of bioactivity signatures or fingerprints is reported using a collection of DNNs derived from broadly released bioactivity data that are relevant to capturing known biological properties, showing a substantial improvement in performance across a series of biophysics and physiology activity prediction benchmarks.

    Article  Google Scholar 

  53. Pandey, M. et al. Extraction of radiographic findings from unstructured thoracoabdominal computed tomography reports using convolutional neural network based natural language processing. PLoS ONE 15, e0236827 (2020).

    Article  Google Scholar 

  54. Fernandez, M. et al. Toxic colors: the use of deep learning for predicting toxicity of compounds merely from their graphic images. J. Chem. Inf. Model. 58, 1533–1543 (2018).

    Article  Google Scholar 

  55. Goh, G. B., Siegel, C., Vishnu, A., Hodas, N. & Baker, N. How much chemistry does a deep neural network need to know to make accurate predictions? In 2018 IEEE Winter Conference on Applications of Computer Vision 1340–1349 (IEEE, 2018).

  56. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    Article  Google Scholar 

  57. Sahoo, S., Adhikari, C., Kuanar, M. & Mishra, B. A short review of the generation of molecular descriptors and their applications in quantitative structure property/activity relationships. Curr. Comput. Aid. Drug Des. 12, 181–205 (2016).

    Article  Google Scholar 

  58. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).

    Article  Google Scholar 

  59. Goh, G. B., Hodas, N. O., Siegel, C. & Vishnu, A. SMILES2vec: an interpretable general-purpose deep neural network for predicting chemical properties. Preprint at https://arxiv.org/abs/1712.02034 (2017).

  60. Jaeger, S., Fulle, S. & Turk, S. Mol2vec: unsupervised machine learning approach with chemical intuition. J. Chem. Inf. Model. 58, 27–35 (2018).

    Article  Google Scholar 

  61. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at https://doi.org/10.48550/arXiv.1312.6114 (2013).

  62. Blaschke, T., Olivecrona, M., Engkvist, O., Bajorath, J. & Chen, H. Application of generative autoencoder in de novo molecular design. Mol. Inf. 37, 1700123 (2018).

    Article  Google Scholar 

  63. Sattarov, B. et al. De novo molecular design by combining deep autoencoder recurrent neural networks with generative topographic mapping. J. Chem. Inf. Model. 59, 1182–1196 (2019).

    Article  Google Scholar 

  64. Samanta, B. et al. NEVAE: a deep generative model for molecular graphs. J. Mach. Learn. Res. https://www.jmlr.org/papers/volume21/19-671/19-671.pdf (2020).

  65. Gui, J., Sun, Z., Wen, Y., Tao, D. & Ye, J. A review on generative adversarial networks: algorithms, theory, and applications. IEEE Trans. Knowl. Data Eng. https://doi.org/10.1109/TKDE.2021.3130191 (2022).

  66. Lin, E., Lin, C.-H. & Lane, H.-Y. Relevant applications of generative adversarial networks in drug design and discovery: molecular de novo design, dimensionality reduction, and de novo peptide and protein design. Molecules 25, 3250 (2020).

    Article  Google Scholar 

  67. Méndez-Lucio, O., Baillif, B., Clevert, D.-A., Rouquié, D. & Wichard, J. De novo generation of hit-like molecules from gene expression signatures using artificial intelligence. Nat. Commun. 11, 10 (2020).

    Article  Google Scholar 

  68. Blanchard, A. E., Stanley, C. & Bhowmik, D. Using GANs with adaptive training data to search for new molecules. J. Cheminform. 13, 14 (2021).

    Article  Google Scholar 

  69. Ben-Baruch, E. et al. Attention Is All You Need. Adv. Neural Inf. Process. Syst. 16, 687–694 (2019).

    Google Scholar 

  70. Shin, B., Park, S., Kang, K. & Ho, J. C. Self-attention based molecule representation for predicting drug-target interaction. In Proc. 4th Machine Learning for Healthcare Conference 106, 230–248 (2019).

    Google Scholar 

  71. Huang, K., Xiao, C., Glass, L. M. & Sun, J. MolTrans: molecular interaction transformer for drug-target interaction prediction. Bioinformatics 37, 830–836 (2021). A molecular interaction transformer (MolTrans) was developed that uses knowledge-inspired sub-structural pattern mining to better extract substructure semantic relations from massive unlabelled biomedical data to improve prediction of ligand–target interactions.

    Article  Google Scholar 

  72. Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Sci. Rep. 11, 31619 (2021).

    Article  Google Scholar 

  73. Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. Preprint at https://arxiv.org/abs/1903.02428 (2019).

  74. Wang, M. et al. Deep Graph Library: a graph-centric, highly-performant package for graph neural networks. Preprint at https://doi.org/10.48550/arXiv.1909.01315 (2019).

  75. Duvenaud, D. et al. Convolutional networks on graphs for learning molecular fingerprints. Adv Neural Inf. Process. Syst. https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf (2015).

  76. Feinberg, E. N. et al. PotentialNet for molecular property prediction. ACS Cent. Sci. 4, 1520–1530 (2018).

    Article  Google Scholar 

  77. Klicpera, J., Groß, J. & Günnemann, S. Directional message passing for molecular graphs. Preprint at https://arxiv.org/abs/2003.03123 (2020).

  78. Torng, W. & Altman, R. B. Graph convolutional neural networks for predicting drug-target interactions. J. Chem. Inf. Model. 59, 4131–4149 (2019).

    Article  Google Scholar 

  79. Gao, K. Y. et al. Interpretable drug target prediction using deep neural representation. Proc. 27th International Joint Conference on Artificial Intelligence 2018, 3371–3377 (2018).

    Google Scholar 

  80. Yang, M., Luo, H., Li, Y. & Wang, J. Drug repositioning based on bounded nuclear norm regularization. Bioinformatics 35, i455–i463 (2019).

    Article  Google Scholar 

  81. Gaudelet, T. et al. Utilizing graph machine learning within drug discovery and development. Brief. Bioinform. https://doi.org/10.1093/bib/bbab159 (2021). This is an informed review of the applications of GNNs and their variants in various components of drug discovery.

  82. Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9, 48 (2017).

    Article  Google Scholar 

  83. Putin, E. et al. Reinforced adversarial neural computer for de novo molecular design. J. Chem. Inf. Model. 58, 1194–1204 (2018).

    Article  Google Scholar 

  84. You, J., Liu, B., Ying, R., Pande, V. S. & Leskovec, J. Graph convolutional policy network for goal-directed molecular graph generation. Preprint at https://doi.org/10.48550/arXiv.1806.02473 (2018).

  85. Zhou, Z., Kearnes, S., Li, L., Zare, R. N. & Riley, P. Optimization of molecules via deep reinforcement learning. Sci. Rep. 9, 10752 (2019).

    Article  Google Scholar 

  86. Grygorenko, O. O. et al. Generating multibillion chemical space of readily accessible screening compounds. iScience 23, 101681 (2020).

    Article  Google Scholar 

  87. Gorgulla, C. et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature 580, 663–668 (2020).

    Article  Google Scholar 

  88. Acharya, A. et al. Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19. J. Chem. Inf. Model. https://doi.org/10.1021/acs.jcim.0c01010 (2020).

  89. McIntosh-Smith, S., Price, J., Sessions, R. B. & Ibarra, A. A. High performance in silico virtual drug screening on many-core processors. Int. J. High Perform. Comput. Appl. 29, 119–134 (2015).

    Article  Google Scholar 

  90. Pérez-Serrano, J., Imbernón, B., Cecilia, J. M. & Ujaldón, M. Energy-based tuning of metaheuristics for molecular docking on multi-GPUs. Concurr. Comput. 30, e4684 (2018).

    Article  Google Scholar 

  91. LeGrand, S. et al. GPU-accelerated drug discovery with docking on the summit supercomputer: porting, optimization, and application to COVID-19 research. In Proc. 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics https://doi.org/10.1145/3388440.3412472 (2020).

  92. Darme, P. et al. Amide v2: high-throughput screening based on AutoDock-GPU and improved workflow leading to better performance and reliability. Int. J. Mol. Sci. 22, 7489 (2021).

    Article  Google Scholar 

  93. Gentile, F. et al. Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent. Sci. 6, 939–949 (2020). The authors propose a novel DL-inspired paradigm that helps accelerate docking, enabling them to screen larger libraries.

    Article  Google Scholar 

  94. Ton, A.-T., Gentile, F., Hsing, M., Ban, F. & Cherkasov, A. Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Mol. Inf. 39, 2000028 (2020).

    Article  Google Scholar 

  95. Gentile, F. et al. Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus deep docking of 40 billion small molecules. Chem. Sci. https://doi.org/10.1039/D1SC05579H (2021). About 40 billion molecules were computational screened against SARS-CoV-2 main protease, returning a large number of experimentally confirmed inhibitors using a fully automated end-to-end drug discovery protocol that integrates machine learning and human expertise.

  96. Graff, D. E., Shakhnovich, E. I. & Coley, C. W. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem. Sci. 12, 7866–7881 (2021).

    Article  Google Scholar 

  97. Yang, Y. et al. Efficient exploration of chemical space with docking and deep learning. J. Chem. Theory Comput. 17, 7106–7119 (2021).

    Article  Google Scholar 

  98. Hofmarcher, M. et al. Large-scale ligand-based virtual screening for SARS-CoV-2 inhibitors using deep neural networks. SSRN Electron. J. https://doi.org/10.2139/ssrn.3561442 (2020).

  99. Ramsundar, B., Eastman, P., Walters, P. & Pande, V. Deep Learning for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, and More (O’Reilly Media, Inc., 2019). This work attempts to democratize DL for life sciences and drug discovery by providing tools for representing data in DL-suitable formats for subsequent modelling.

  100. Minnich, A. J. et al. AMPL: a data-driven modeling pipeline for drug discovery. J. Chem. Inf. Model. 60, 1955–1968 (2020).

    Article  Google Scholar 

  101. Korshunova, M., Ginsburg, B., Tropsha, A. & Isayev, O. OpenChem: a deep learning toolkit for computational chemistry and drug design. J. Chem. Inf. Model. 61, 7–13 (2021).

    Article  Google Scholar 

  102. Mercado, R. et al. Graph networks for molecular design. Mach. Learn. Sci. Technol 2, 25023 (2021).

    Article  Google Scholar 

  103. Polykovskiy, D. et al. Molecular Sets (MOSES): a benchmarking platform for molecular generation models. Front. Pharmacol. 11, 1931 (2020).

    Article  Google Scholar 

  104. Cherkasov, A. et al. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 57, 4977–5010 (2014).

    Article  Google Scholar 

  105. Dixon, S. L. et al. Medicinal chemistry AutoQSAR: an automated machine learning tool for best-practice QSAR modeling. Future Med. Chem. 8, 1825–1839 (2016).

    Article  Google Scholar 

  106. Ekins, S. et al. Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18, 435–441 (2019).

    Article  Google Scholar 

  107. Al Saadi, A. et al. IMPECCABLE: Integrated Modeling PipelinE for COVID Cure by Assessing Better LEads. In 50th International Conference on Parallel Processing 20, 1–12 (ACM, 2021).

  108. NVIDIA Clara. https://developer.nvidia.com/clara (NVIDIA Corporation, 2021).

  109. Baum, Z. J. et al. Artificial intelligence in chemistry: current trends and future directions. J. Chem. Inf. Model. https://doi.org/10.1021/acs.jcim.1c00619 (2021).

  110. Artrith, N. et al. Best practices in machine learning for chemistry. Nat. Chem. 13, 505–508 (2021).

    Article  Google Scholar 

  111. Feinberg, E. N., Joshi, E., Pande, V. S. & Cheng, A. C. Improvement in ADMET prediction with multitask deep featurization. J. Med. Chem. 63, 8835–8848 (2020).

    Article  Google Scholar 

  112. Klicpera, J., Yeshwanth, C. & Günnemann, S. Directional message passing on molecular graphs via synthetic coordinates. Preprint at https://doi.org/10.48550/arXiv.2111.04718 (2021).

  113. Wieder, O. et al. A compact review of molecular property prediction with graph neural networks. Drug Disc. Today Technol. https://doi.org/10.1016/j.ddtec.2020.11.009 (2020).

  114. Putin, E. et al. Adversarial threshold neural computer for molecular de novo design. Mol. Pharm. 15, 4386–4397 (2018).

    Article  Google Scholar 

  115. Samanta, B. et al. NeVAE: a deep generative model for molecular graphs. Proc. AAAI Conf. Artif. Intell. 33, 1110–1117 (2019).

    Google Scholar 

  116. Asgari, E. & Mofrad, M. R. K. ProtVec: a continuous distributed representation of biological sequences. PLoS ONE 10, 141287 (2015).

    Article  Google Scholar 

  117. Imrie, F., Bradley, A. R., van der Schaar, M. & Deane, C. M. Protein family-specific models using deep neural networks and transfer learning improve virtual screening and highlight the need for more data. J. Chem. Inf. Model. 58, 2319–2330 (2018).

    Article  Google Scholar 

  118. Mayr, A., Klambauer, G., Unterthiner, T. & Hochreiter, S. DeepTox: toxicity prediction using deep learning. Front. Environ. Sci. 3, 80 (2016).

    Article  Google Scholar 

  119. Ye, Z., Yang, Y., Li, X., Cao, D. & Ouyang, D. An integrated transfer learning and multitask learning approach for pharmacokinetic parameter prediction. Mol. Pharm. 16, 533–541 (2018).

    Article  Google Scholar 

  120. Ashtawy, H. M. & Mahapatra, N. R. Task-specific scoring functions for predicting ligand binding poses and affinity and for screening enrichment. J. Chem. Inf. Model. 58, 119–133 (2017).

    Article  Google Scholar 

  121. Chen, S., Xue, D., Chuai, G., Yang, Q. & Liu, Q. FL-QSAR: a federated learning-based QSAR prototype for collaborative drug discovery. Bioinformatics 36, 5492–5498 (2021).

    Article  Google Scholar 

  122. Xiong, Z. et al. Facing small and biased data dilemma in drug discovery with enhanced federated learning approaches. Sci. China Life Sci. https://doi.org/10.1007/s11427-021-1946-0 (2021).

  123. Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).

    Article  Google Scholar 

  124. Neil, D. et al. Exploring deep recurrent models with reinforcement learning for molecule design. Preprint at https://openreview.net/forum?id=HkcTe-bR- (2018).

  125. Ståhl, N., Falkman, G., Karlsson, A., Mathiason, G. & Boström, J. Deep reinforcement learning for multiparameter optimization in de novo drug design. J. Chem. Inf. Model. 59, 3166–3176 (2019).

    Article  Google Scholar 

  126. Liu, R., Wang, H., Glover, K. P., Feasel, M. G. & Wallqvist, A. Dissecting machine-learning prediction of molecular activity: is an applicability domain needed for quantitative structure–activity relationship models based on deep neural networks? J. Chem. Inf. Model. 59, 117–126 (2018).

    Article  Google Scholar 

  127. Schwaller, P. et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Cent. Sci. 5, 1572–1583 (2019).

    Article  Google Scholar 

  128. Zhang, Y. & Lee, A. A. Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning. Chem. Sci. 10, 8154–8163 (2019).

    Article  Google Scholar 

  129. Ryu, S., Lim, J., Hong, S. H. & Kim, W. Y. Deeply learning molecular structure-property relationships using attention- and gate-augmented graph convolutional network. Preprint at https://doi.org/10.48550/arXiv.1805.10988 (2018).

  130. Coley, C. W. et al. A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 10, 370–377 (2019).

    Article  Google Scholar 

  131. Rajasekaran, S., Fiondella, L., Ahmed, M. & Ammar, R. A. (eds). Multicore Computing: Algorithms, Architectures, and Applications 1st edn (Chapman & Hall/CRC, 2013).

  132. Li, M. et al. Scaling distributed machine learning with the parameter server. In Proc. 11th USENIX Conference on Operating Systems Design and Implementation 583–598 (USENIX Association, 2014).

Download references

Acknowledgements

This work was funded by the Canadian Institutes of Health Research (CIHR), Canadian 2019 Novel Coronavirus (2019-nCoV) Rapid Research grant numbers OV3-170631 and VR3-172639, and generous donations for COVID-19 research from TELUS, Teck Resources, the 625 Powell Street Foundation, the Tai Hung Fai Charitable Foundation and the Vancouver General Hospital Foundation. F.G. is supported by fellowships from the Canadian Institutes for Health Research (MFE-171324), Michael Smith Foundation for Health Research/VCHRI and VGH UBC Hospital Foundation (RT-2020-0408) and the Ermenegildo Zegna Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abraham C. Stern or Artem Cherkasov.

Ethics declarations

Competing interests

A.C.S. is employed by the NVIDIA corporation, a manufacturer of GPU technology. No other authors received funding from NVIDIA for this work.

Peer review

Peer review information

Nature Machine Intelligence thanks Jeremy Smith, Leonardo Solis-Vasquez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, M., Fernandez, M., Gentile, F. et al. The transformational role of GPU computing and deep learning in drug discovery. Nat Mach Intell 4, 211–221 (2022). https://doi.org/10.1038/s42256-022-00463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42256-022-00463-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research