Abstract
With the rapid development of quantum technologies, a pressing need has emerged for a wide array of tools for the certification and characterization of quantum devices. Such tools are critical because the powerful applications of quantum information science will only be realized if stringent levels of precision of components can be reached and their functioning guaranteed. This Technical Review provides a brief overview of the known characterization methods for certification, benchmarking and tomographic reconstruction of quantum states and processes, and outlines their applications in quantum computing, simulation and communication.
Key points
To ensure the correct functioning of a quantum device, its components must be certified and benchmarked.
Certification, benchmarking and characterization tasks are particularly demanding in quantum simulation and computing applications.
The most common tools for certification and benchmarking are surveyed and assessed according to the information that may be extracted from the protocol, the assumptions underlying the protocol, and its complexity in terms of samples, measurements and post-processing.
We highlight particularly important concepts, protocols and applications and list key figures of merit — information gain, complexity and underlying assumptions — for several protocols.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
9,800 Yen / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥11,900 per year
only ¥992 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Acin, A. et al. The European quantum technologies roadmap. New J. Phys. 20, 080201 (2018).
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, aam9288 (2018).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).
Preskill, J. Quantum computing and the entanglement frontier. Preprint at https://arxiv.org/abs/1203.5813 (2012).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017).
Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
Gheorghiu, A., Kapourniotis, T. & Kashefi, E. Verification of quantum computation: an overview of existing approaches. Th. Comp. Sys. 63, 715–808 (2019).
Fitzsimons, J. F. Private quantum computation: an introduction to blind quantum computing and related protocols. NPJ Quant. Inf. 3, 23 (2017).
Hradil, Z. Quantum-state estimation. Phys. Rev. A 55, 1561–1564 (1997).
James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).
Hradil, Z., Rehacek, J., Fiurasek, J. & Jezek, M. in Quantum State Estimation, 59–112 (Springer, 2004).
Blume-Kohout, R. Optimal, reliable estimation of quantum states. New J. Phys. 12, 043034 (2010).
Ferrie, C. High posterior density ellipsoids of quantum states. New J. Phys. 16, 023006 (2014).
Blume-Kohout, R. Robust error bars for quantum tomography. Preprint at https://arxiv.org/abs/1202.5270 (2012).
Christandl, M. & Renner, R. Reliable quantum state tomography. Phys. Rev. Lett. 109, 120403 (2012).
Wang, J., Scholz, V. B. & Renner, R. Confidence polytopes in quantum state tomography. Phys. Rev. Lett. 122, 190401 (2019).
Gross, D., Liu, Y.-K., Flammia, S. T., Becker, S. & Eisert, J. Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010).
Kalev, A., Kosut, R. L. & Deutsch, I. H. Quantum tomography protocols with positivity are compressed sensing protocols. NPJ Quant. Inf. 1, 15018 (2015).
Guta, M., Kahn, J., Kueng, R. & Tropp, J. A. Fast state tomography with optimal error bounds. Preprint at https://arxiv.org/abs/1809.11162 (2018).
Flammia, S. T., Gross, D., Liu, Y.-K. & Eisert, J. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14, 095022 (2012).
Kliesch, M., Kueng, R., Eisert, J. & Gross, D. Guaranteed recovery of quantum processes from few measurements. Quantum 3, 171 (2019).
Cramer, M. et al. Efficient quantum state tomography. Nat. Commun. 1, 149 (2010).
Hübener, R., Mari, A. & Eisert, J. Wick’s theorem for matrix product states. Phys. Rev. Lett. 110, 040401 (2013).
Baumgratz, T., Gross, D., Cramer, M. & Plenio, M. B. Scalable reconstruction of density matrices. Phys. Rev. Lett. 111, 020401 (2013).
Ohliger, M., Nesme, V. & Eisert, J. Efficient and feasible state tomography of quantum many-body systems. New J. Phys. 15, 015024 (2013).
Torlai, G. et al. Many-body quantum state tomography with neural networks. Nat. Phys. 14, 447–450 (2018).
Carrasquilla, J., Torlai, G., Melko, R. G. & Aolita, L. Reconstructing quantum states with generative models. Nat. Mach. Intell. 1, 155–161 (2019).
Aaronson, S. The learnability of quantum states. Proc. Roy. Soc. A 463, 3089–3114 (2007).
Rocchetto, A. Stabiliser states are efficiently PAC-learnable. Quant. Inf. Comp. 541–552 (2018).
Rocchetto, A. et al. Experimental learning of quantum states. Sci. Adv. 5, eaau1946 (2019).
Holzäpfel, M., Baumgratz, T., Cramer, M. & Plenio, M. B. Scalable reconstruction of unitary processes and Hamiltonians. Phys. Rev. A 91, 042129 (2015).
Granade, C. E., Ferrie, C., Wiebe, N. & Cory, D. G. Robust online Hamiltonian learning. New J. Phys. 14, 103013 (2012).
Flammia, S. T. & Liu, Y.-K. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011).
Reich, D. M., Gualdi, G. & Koch, C. P. Optimal strategies for estimating the average fidelity of quantum gates. Phys. Rev. Lett. 111, 200401 (2013-12).
Pallister, S., Linden, N. & Montanaro, A. Optimal verification of entangled states with local measurements. Phys. Rev. Lett. 120, 170502 (2018).
Aolita, L., Gogolin, C., Kliesch, M. & Eisert, J. Reliable quantum certification for photonic quantum technologies. Nat. Commun. 6, 8498 (2015).
Gluza, M., Kliesch, M., Eisert, J. & Aolita, L. Fidelity witnesses for fermionic quantum simulations. Phys. Rev. Lett. 120, 190501 (2018).
Hangleiter, D., Kliesch, M., Schwarz, M. & Eisert, J. Direct certification of a class of quantum simulations. Quantum Sci. Technol. 2, 015004 (2017).
Jurcevic, P. et al. Observation of entanglement propagation in a quantum many-body system. Nature 511, 202–205 (2014).
Eisert, J., Brandao, F. G. S. L. & Audenaert, K. M. R. Quantitative entanglement witnesses. New J. Phys. 9, 46 (2007).
Audenaert, K. M. R. & Plenio, M. B. When are correlations quantum? New J. Phys. 8, 266 (2006).
Guehne, O., Reimpell, M. & Werner, R. F. Estimating entanglement measures in experiments. Phys. Rev. Lett. 98, 110502 (2007).
Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).
Trotzky, S. et al. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 8, 325–330 (2012).
Trotzky, S. et al. Suppression of the critical temperature for superfluidity near the Mott transition: validating a quantum simulator. Nat. Phys. 6, 998–1004 (2010).
Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasi-random optical lattice. Science 349, 842–845 (2015).
Braun, S. et al. Emergence of coherence and the dynamics of quantum phase transitions. Proc. Natl. Acad. Sci. USA 112, 3641–3646 (2015).
Kokail, C. et al. Self-verifying variational quantum simulation of the lattice Schwinger model. Nature 569, 355–360 (2019).
Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124, 010504 (2020).
Takeuchi, Y. & Morimae, T. Verification of many-qubit states. Phys. Rev. X 8, 021060 (2018).
Markham, D. & Krause, A. A simple protocol for certifying graph states and applications in quantum networks. Preprint at https://arxiv.org/abs/1801.05057 (2018).
Takeuchi, Y., Mantri, A., Morimae, T., Mizutani, A. & Fitzsimons, J. F. Resource-efficient verification of quantum computing using Serfling’s bound. NPJ Quantum Inf. 5, 1–8 (2019).
Chabaud, U., Douce, T., Grosshans, F., Kashefi, E. & Markham, D. Building trust for continuous variable quantum states. Preprint at https://arxiv.org/abs/1905.12700 (2019).
Merkel, S. T. et al. Self-consistent quantum process tomography. Phys. Rev. A 87, 062119 (2013).
Blume-Kohout, R. et al. Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit. Preprint at https://arxiv.org/abs/1310.4492 (2013).
Blume-Kohout, R. &, et al. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nat. Commun. 8, 14485 (2017).
Branczyk, A. M. et al. Self-calibrating quantum state tomography. New J. Phys. 14, 085003 (2012).
Mogilevtsev, D., Rehacek, J. & Hradil, Z. Self-calibration for self-consistent tomography. New J. Phys. 14, 095001 (2012).
Sim, J. Y., Shang, J., Ng, H. K. & Englert, B.-G. Proper error bars for self-calibrating quantum tomography. Preprint at https://arxiv.org/abs/1904.11202 (2019).
Motka, L. et al. Efficient algorithm for optimizing data-pattern tomography. Phys. Rev. A 89, 054102 (2014).
Rehacek, J., Mogilevtsev, D. & Hradil, Z. Operational tomography: fitting of data patterns. Phys. Rev. Lett. 105, 010402 (2010).
Ferrie, C. et al. Quantum model averaging. New J. Phys. 16, 093035 (2014).
Emerson, J., Alicki, R. & Zyczkowski, K. Scalable noise estimation with random unitary operators. J. Opt. B 7, S347–S352 (2005).
Dankert, C., Cleve, R., Emerson, J. & Livine, E. Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009).
Lévi, B., López, C. C., Emerson, J. & Cory, D. G. Efficient error characterization in quantum information processing. Phys. Rev. A 75, 022314 (2007).
Magesan, E., Gambetta, J. M. & Emerson, J. Robust randomized benchmarking of quantum processes. Phys. Rev. Lett. 106, 042311 (2011).
Scarani, V. et al. The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).
Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).
Linke, N. M. et al. Experimental comparison of two quantum computing architectures. Proc. Natl. Acad. Sci. USA 114, 3305–3310 (2017).
Mayers, D. & Yao, A. Self testing quantum apparatus. Quantum Inf. Comput. 4, 273 (2004).
McKague, M. in Theory of Quantum Computation, Communication, and Cryptography, 104–120 (Springer, 2011).
Sekatski, P., Bancal, J.-D., Wagner, S. & Sangouard, N. Certifying the building blocks of quantum computers from Bell’s theorem. Phys. Rev. Lett. 121, 180505 (2018).
Reichardt, B. W., Unger, F. & Vazirani, U. Classical command of quantum systems. Nature 496, 456–460 (2013).
Natarajan, A. & Vidick, T. Low-degree testing for quantum states. Preprint at https://arxiv.org/abs/1801.03821 (2018).
Supic, I. & Bowles, J. Self-testing of quantum systems: a review. Preprint at https://arxiv.org/abs/1904.10042 (2019).
Fitzsimons, J. F. & Kashefi, E. Unconditionally verifiable blind computation. Phys. Rev. A 96, 012303 (2017).
Coladangelo, A., Grilo, A., Jeffery, S. & Vidick, T. Verifier-on-a-leash: new schemes for verifiable delegated quantum computation, with quasilinear resources. Preprint at https://arxiv.org/abs/1708.07359 (2017).
Mahadev, U. Classical verification of quantum computations. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), 259–267 (IEEE, 2018).
Gheorghiu, A. & Vidick, T. Computationally-secure and composable remote state preparation. Preprint at https://arxiv.org/abs/1904.06320 (2019).
Alagic, G., Childs, A. M. & Hung, S.-H. Two-message verification of quantum computation. Preprint at https://arxiv.org/abs/1911.08101 (2019).
Regev, O. et al. The Learning with Errors problem (invited survey). Proc. 25th Annual IEEE Conf. on Computational Complexity (CCC ‘10), https://doi.org/10.1109/CCC.2010.26 (2010).
Aaronson, S. & Arkhipov, A. BosonSampling is far from uniform. Preprint at https://arxiv.org/abs/1309.7460 (2013).
Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014).
Spagnolo, N. et al. Efficient experimental validation of photonic boson sampling against the uniform distribution. Nat. Photon. 8, 615–620 (2014).
Aaronson, S. & Chen, L. Complexity-theoretic foundations of quantum supremacy experiments. Preprint at https://arxiv.org/abs/1612.05903 (2016).
Boixo, S. et al. Characterizing quantum supremacy in near-term devices. Nat. Phys. 14, 595–600 (2018).
Bouland, A., Fefferman, B., Nirkhe, C. & Vazirani, U. On the complexity and verification of quantum random circuit sampling. Nat. Phys. 15, 159–163 (2019).
Valiant, G. & Valiant, P. An automatic inequality prover and instance optimal identity testing. SIAM J. Comput. 46, 429–455 (2017).
Hangleiter, D., Kliesch, M., Eisert, J. & Gogolin, C. Sample complexity of device-independently certified ‘quantum supremacy’. Phys. Rev. Lett. 122, 210502 (2019).
Bermejo-Vega, J., Hangleiter, D., Schwarz, M., Raussendorf, R. & Eisert, J. Architectures for quantum simulation showing a quantum speedup. Phys. Rev. X 8, 021010 (2018).
Harper, R., Hincks, I., Ferrie, C., Flammia, S. T. & Wallman, J. J. Statistical analysis of randomized benchmarking. Phys. Rev. A 99, 052350 (2019).
Baumgratz, T., Nüßeler, A., Cramer, M. & Plenio, M. B. A scalable maximum likelihood method for quantum state tomography. New J. Phys. 15, 125004 (2013).
Portmann, C. & Renner, R. Cryptographic security of quantum key distribution. Preprint at https://arxiv.org/abs/1409.3525 (2014).
Watrous, J. Simpler semidefinite programs for completely bounded norms. Preprint at https://arxiv.org/abs/1207.5726 (2012).
Schumacher, B. Sending entanglement through noisy quantum channels. Phys. Rev. A 54, 2614–2628 (1996).
Kueng, R., Long, D. M., Doherty, A. C. & Flammia, S. T. Comparing experiments to the fault-tolerance threshold. Phys. Rev. Lett. 117, 170502 (2016).
Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. Validating quantum computers using randomized model circuits. Preprint at https://arxiv.org/abs/1811.12926 (2018).
Streltsov, A., Adesso, G. & Plenio, M. B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017).
Guehne, O. & Toth, G. Entanglement detection. Phys. Rep. 474, 1 (2009).
Mari, A., Kieling, K., Nielsen, B. M., Polzik, E. & Eisert, J. Directly estimating non-classicality. Phys. Rev. Lett. 106, 010403 (2011).
Guta, M., Kypraios, T. & Dryden, I. Rank-based model selection for multiple ions quantum tomography. New J. Phys. 14, 105002 (2012).
Phillips, D. S. et al. Benchmarking of Gaussian boson sampling using two-point correlators. Phys. Rev. A 99, 023836 (2019).
Ferracin, S., Kapourniotis, T. & Datta, A. Verifying quantum computations on noisy intermediate-scale quantum devices. Preprint at https://arxiv.org/abs/1811.09709 (2018).
Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).
Barends, R. et al. Rolling quantum dice with a superconducting qubit. Phys. Rev. A 90, 030303 (2014).
Carignan-Dugas, A., Wallman, J. J. & Emerson, J. Characterizing universal gate sets via dihedral benchmarking. Phys. Rev. A 92, 060302 (2015).
Cross, A. W., Magesan, E., Bishop, L. S., Smolin, J. A. & Gambetta, J. M. Scalable randomized benchmarking of non-Clifford gates. NPJ Quant. Inf. 2, 16012 (2016).
Onorati, E., Werner, A. H. & Eisert, J. Randomized benchmarking for individual quantum gates. Phys. Rev. Lett. 123, 060501 (2019).
Helsen, J., Xue, X., Vandersypen, L. M. K. & Wehner, S. A new class of efficient randomized benchmarking protocols. NPJ Quant. Inf. 5, 1–9 (2019).
Erhard, A. et al. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun. 10, 5347 (2019).
Wallman, J. J. Randomized benchmarking with gate-dependent noise. Quantum 2, 47 (2018).
Wallman, J. J. & Flammia, S. T. Randomized benchmarking with confidence. New. J. Phys. 16, 103032 (2014).
Helsen, J., Wallman, J. J., Flammia, S. T. & Wehner, S. Multiqubit randomized benchmarking using few samples. Phys. Rev. A 100, 032304 (2019).
Magesan, E. et al. Efficient measurement of quantum gate error by interleaved randomized benchmarking. Phys. Rev. Lett. 109, 080505 (2012).
Wallman, J., Granade, C., Harper, R. & Flammia, S. T. Estimating the coherence of noise. New J. Phys. 17, 113020 (2015).
Gambetta, J. M. et al. Characterization of addressability by simultaneous randomized benchmarking. Phys. Rev. Lett. 109, 240504 (2012).
Wallman, J. J., Barnhill, M. & Emerson, J. Robust characterization of loss rates. Phys. Rev. Lett. 115, 060501 (2015).
Wallman, J. J., Barnhill, M. & Emerson, J. Robust characterization of leakage errors. New J. Phys. 18, 043021 (2016).
Kimmel, S., da Silva, M. P., Ryan, C. A., Johnson, B. R. & Ohki, T. Robust extraction of tomographic information via randomized benchmarking. Phys. Rev. X 4, 011050 (2014).
Roth, I. et al. Recovering quantum gates from few average gate fidelities. Phys. Rev. Lett. 121, 170502 (2018).
Flammia, S. T. & Wallman, J. J. Efficient estimation of Pauli channels. Preprint at https://arxiv.org/abs/1907.12976 (2019).
Franca, D. S. & Hashagen, A.-L. Approximate randomized benchmarking for finite groups. J. Phys. A 51, 395302 (2018).
Proctor, T. J. et al. Direct randomized benchmarking for multiqubit devices. Phys. Rev. Lett. 123, 030503 (2019).
Acknowledgements
We gratefully acknowledge discussions with D. Gross and J. Helsen, in addition to many other members of the scientific community. J.E. acknowledges funding from the DFG (CRC 183 project B01, EI 519/9-1, EI 519/14-1, EI 519/15-1, MATH+ project EF1-7, Deadalus, CRC 1114 project B06, FOR 2724), the BMWF (Q.Link.X), the BMWi (PlanQK), FQXi (2019-207756) and the Templeton Foundation. This work also received funding from the European Union (EU) Horizon 2020 research and innovation programme under grant agreement no. 817482 (PASQuanS). N.W. acknowledges funding support from the EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 750905. E.K. and D.M. acknowledge funding from the ANR project ANR-13-BS04-0014 COMB, E.K. by the EPSRC (EP/N003829/1).
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Physics thanks Mehul Malik and the other, anonymous, reviewers for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Noisy intermediate-scale quantum (NISQ) devices
-
A first generation of quantum computational devices, partially already realized, that consist of up to a few hundred qubits (intermediate scale), which are only partially controlled and not protected by quantum error correction (and hence are noisy).
- Tomographic reconstruction
-
The process of reconstructing an unknown quantum state or process from the observed statistics of a well-chosen collection of measurements carried out on an ensemble of identically prepared systems.
- Resampling techniques
-
Refers to a body of methods in statistics aimed at estimating the precision of sample statistics, of validating models by using random subsets or of estimating confidence regions by statistical means.
- Bayesian prior
-
In Bayesian statistical inference, an initial estimate of the probability of a hypothesis (the Bayesian prior) is updated according to Bayes’ theorem as more information becomes available.
- Compressed sensing
-
A field of applied mathematics that studies rigorous guarantees for algorithmic solutions to linear inverse problems under structure assumptions, such as sparsity and low-rankness.
- PAC
-
‘Probably approximately correct’ (PAC) learning is an algorithm that, given sample inputs and outputs of an unknown function f, returns a candidate function (hypothesis) that with high probability closely approximates f when applied to unseen data.
- Unitary 2-designs
-
A finite set of unitary gates with the property that averages over any quadratic polynomial with respect to this set are equal to the Haar measure average over the full unitary group, useful in particular when estimating average fidelities.
- Sub-universal models of quantum computing
-
Computational tasks that are insufficient for an arbitrary or universal quantum computation but remain provably hard for classical computers. They are potentially feasible using NISQ devices.
- Clifford gates
-
A group of quantum gates that map Pauli operators onto Pauli operators and play a key role specifically in fault-tolerant quantum computing.
- Quantum twirling lemma
-
A lemma that reduces arbitrary quantum maps to convex combinations of local Pauli maps by using averages over the Pauli or the Clifford group.
- Post-quantum-secure collision-resistant hash functions
-
Functions scrambling a larger space into a smaller space (hash) which rarely map distinct inputs to the same output (collision-resistant) and cannot be efficiently inverted by quantum computers (post-quantum-secure).
Rights and permissions
About this article
Cite this article
Eisert, J., Hangleiter, D., Walk, N. et al. Quantum certification and benchmarking. Nat Rev Phys 2, 382–390 (2020). https://doi.org/10.1038/s42254-020-0186-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-020-0186-4
This article is cited by
-
Learning properties of quantum states without the IID assumption
Nature Communications (2024)
-
Cross-platform comparison of arbitrary quantum processes
npj Quantum Information (2024)
-
Efficient and robust estimation of many-qubit Hamiltonians
Nature Communications (2024)
-
Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK
KI - Künstliche Intelligenz (2024)
-
A benchmarking procedure for quantum networks
npj Quantum Information (2023)