Limited quantity and quality of steel supply in a zero-emission future | Nature Sustainability
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Limited quantity and quality of steel supply in a zero-emission future

Abstract

Achieving a zero-emission future depends greatly on how steel production is decarbonized within a limited time frame. Here we show that the production of zero-emission steel is possible but that the quantity and quality of steel may be limited by scrap downcycling. Using Japan as a case study, our analysis shows that most steel scrap is currently downcycled into construction materials, thereby limiting scrap-based steel to only 20% of the total steel used for automobiles, compared to 60% for buildings. Under a strict carbon budget, such downcycling practices could limit the production of steel used for automobiles to ~40% of current levels by 2050, even if production technology progresses according to the roadmap. The results indicate that steel users should not take the current level of steel supply for granted in a zero-emission future. Decarbonizing the steel sector, therefore, will depend not only on stand-alone efforts by the steel industry but on joint action with steel users to enable scrap upcycling and service provision with less steel use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of steel flows from raw materials to end-use goods in Japan in 2019.
Fig. 2: Production of crude steel, finished steel and end-use goods, available under the carbon budget in Japan, 2010–2050.
Fig. 3: In-use steel stocks available under the carbon budget in Japan, 2010–2050.

Similar content being viewed by others

Data availability

The input data and model results of this study have been deposited on GitHub (https://github.com/takumawatari/material-budget-steel). Source data are provided with this paper.

Code availability

The full model code is available on GitHub (https://github.com/takumawatari/material-budget-steel).

References

  1. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  2. Net Zero by 2050: A Roadmap for the Global Energy Sector (International Energy Agency, 2021).

  3. Hermwille, L. et al. A climate club to decarbonize the global steel industry. Nat. Clim. Change 12, 494–503 (2022).

    Article  Google Scholar 

  4. Rissman, J. et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl. Energy 266, 114848 (2020).

    Article  CAS  Google Scholar 

  5. Pauliuk, S., Arvesen, A., Stadler, K. & Hertwich, E. G. Industrial ecology in integrated assessment models. Nat. Clim. Change 7, 13–20 (2017).

    Article  Google Scholar 

  6. Kermeli, K. et al. Improving material projections in Integrated Assessment Models: the use of a stock-based versus a flow-based approach for the iron and steel industry. Energy 239, 122434 (2022).

    Article  Google Scholar 

  7. Van Ruijven, B. J. et al. Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries. Resour. Conserv. Recycl. 112, 15–36 (2016).

    Article  Google Scholar 

  8. van Sluisveld, M. A. E., de Boer, H. S., Daioglou, V., Hof, A. F. & van Vuuren, D. P. A race to zero—assessing the position of heavy industry in a global net-zero CO2 emissions context. Energy Clim. Change 2, 100051 (2021).

    Article  Google Scholar 

  9. Oshiro, K. & Fujimori, S. Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals. Appl. Energy 313, 118803 (2022).

    Article  CAS  Google Scholar 

  10. Morfeldt, J., Nijs, W. & Silveira, S. The impact of climate targets on future steel production—an analysis based on a global energy system model. J. Clean. Prod. 103, 469–482 (2015).

    Article  CAS  Google Scholar 

  11. Vogl, V. et al. Green Steel Tracker, Version 06/2022 (Leadership Group for Industry Transition, 2022); https://www.industrytransition.org/green-steel-tracker/

  12. Chen, S., Liu, J., Zhang, Q., Teng, F. & Mclellan, B. C. A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renew. Sustain. Energy Rev. 167, 12537 (2022).

    Article  Google Scholar 

  13. Daehn, K. et al. Innovations to decarbonize materials industries. Nat. Rev. Mater. 7, 275–294 (2021).

    Article  Google Scholar 

  14. Nelson, S. & Allwood, J. M. The technological and social timelines of climate mitigation: lessons from 12 past transitions. Energy Policy 152, 112155 (2021).

    Article  Google Scholar 

  15. Allwood, J. et al. Absolute Zero: Delivering the UK’s Climate Change Commitment with Incremental changes to Todays Technologies (Univ. Bath, 2019); https://doi.org/10.17863/CAM.46075

  16. Odenweller, A., Ueckerdt, F., Nemet, G. F., Jensterle, M. & Luderer, G. Probabilistic feasibility space of scaling up green hydrogen supply. Nat. Energy 7, 854–865 (2022).

    Article  Google Scholar 

  17. Cullen, J. M., Allwood, J. M. & Bambach, M. D. Mapping the global flow of steel: from steelmaking to end-use goods. Environ. Sci. Technol. 46, 13048–13055 (2012).

    Article  CAS  Google Scholar 

  18. Zhu, Y., Syndergaard, K. & Cooper, D. R. Mapping the annual flow of steel in the United States. Environ. Sci. Technol. 53, 11260–11268 (2019).

    Article  CAS  Google Scholar 

  19. Milford, R. L., Pauliuk, S., Allwood, J. M. & Müller, D. B. The roles of energy and material efficiency in meeting steel industry CO2 targets. Environ. Sci. Technol. 47, 3455–3462 (2013).

    Article  CAS  Google Scholar 

  20. Pauliuk, S., Heeren, N., Berrill, P., Fishman, T. & Hertwich, E. G. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 12, 5097 (2021).

    Article  CAS  Google Scholar 

  21. Watari, T. et al. Global metal use targets in line with climate goals. Environ. Sci. Technol. 54, 12476–12483 (2020).

    Article  CAS  Google Scholar 

  22. Wang, P., Ryberg, M., Chen, W., Kara, S. & Hauschild, M. Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts. Nat. Commun. 12, 2066 (2021).

    Article  CAS  Google Scholar 

  23. Allwood, J. M., Cullen, J. M. & Milford, R. L. Options for achieving a 50% cut in industrial carbon emissions by 2050. Environ. Sci. Technol. 44, 1888–1894 (2010).

    Article  CAS  Google Scholar 

  24. Pauliuk, S., Kondo, Y., Nakamura, S. & Nakajima, K. Regional distribution and losses of end-of-life steel throughout multiple product life cycles—insights from the global multiregional MaTrace model. Resour. Conserv. Recycl. 116, 84–93 (2017).

    Article  Google Scholar 

  25. Nakamura, S. et al. Quality and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input–output analysis under explicit consideration of scrap quality. Environ. Sci. Technol. 46, 9266–9273 (2012).

    Article  CAS  Google Scholar 

  26. Nakamura, S. et al. MaTrace: tracing the fate of materials over time and across products in open-loop recycling. Environ. Sci. Technol. 48, 7207–7214 (2014).

    Article  CAS  Google Scholar 

  27. Daehn, K. E., Cabrera Serrenho, A. & Allwood, J. M. How will copper contamination constrain future global steel recycling? Environ. Sci. Technol. 51, 6599–6606 (2017).

    Article  CAS  Google Scholar 

  28. World Energy Outlook 2021 (International Energy Agency, 2021).

  29. Steel Statistics (World Steel Association, 2022); https://worldsteel.org/steel-by-topic/statistics/

  30. Helbig, C. et al. A terminology for downcycling. J. Ind. Ecol. 26, 1164–1174 (2022).

    Article  Google Scholar 

  31. Nakajima, K., Takeda, O., Miki, T., Matsubae, K. & Nagasaka, T. Thermodynamic analysis for the controllability of elements in the recycling process of metals. Environ. Sci. Technol. 45, 4929–4936 (2011).

    Article  CAS  Google Scholar 

  32. Reck, B. K. & Graedel, T. Challenges in metal recycling. Science 337, 690–695 (2012).

    Article  CAS  Google Scholar 

  33. Panasiuk, D. et al. International comparison of impurities mixing and accumulation in steel scrap. J. Ind. Ecol. 26, 1040–1050 (2022).

    Article  Google Scholar 

  34. Allwood, J. M., Dunant, C. F., Lupton, R. C. & Serrenho, A. C. H. Steel Arising: Opportunities for the UK in a Transforming Global Steel Industry (Univ. Cambridge, 2019); https://doi.org/10.17863/CAM.40835

  35. Harvey, L. D. D. Iron and steel recycling: review, conceptual model, irreducible mining requirements, and energy implications. Renew. Sustain. Energy Rev. 138, 110553 (2021).

    Article  CAS  Google Scholar 

  36. Analysis of Mid-Range Target Achievement Using AIM Model (National Institute for Environmental Studies, 2021); https://www-iam.nies.go.jp/aim/projects_activities/index.html

  37. Haberl, H. et al. Stocks, flows, services and practices: nexus approaches to sustainable social metabolism. Ecol. Econ. 182, 106949 (2021).

    Article  Google Scholar 

  38. JISF Long-term Vision for Climate Change Mitigation (The Japan Iron and Steel Federation, 2019); https://www.jisf.or.jp/en/activity/climate/documents/JISFLong-termvisionforclimatechangemitigation_text.pdf

  39. Technology Roadmap for ‘Transition Finance’ in Iron and Steel Sector (Ministry of Economy Trade and Industry, 2021); https://www.meti.go.jp/english/press/2021/1027_002.html

  40. Allwood, J. M., Ashby, M. F., Gutowski, T. G. & Worrell, E. Material efficiency: a white paper. Resour. Conserv. Recycl. 55, 362–381 (2011).

    Article  Google Scholar 

  41. Hertwich, E. G. et al. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environ. Res. Lett. 14, 043004 (2019).

    Article  CAS  Google Scholar 

  42. Allwood, J. M. & Cullen, J. M. Sustainable Materials—With Both Eyes Open (UIT Cambridge, 2012).

  43. Martin, E., Shaheen, S. & Lidicker, J. Impact of carsharing on household vehicle holdings: results from North American shared-use vehicle survey. Transp. Res. Rec. 2143, 150–158 (2010).

    Article  Google Scholar 

  44. Wolfram, P., Tu, Q., Heeren, N., Pauliuk, S. & Hertwich, E. G. Material efficiency and climate change mitigation of passenger vehicles. J. Ind. Ecol. 25, 494–510 (2021).

    Article  Google Scholar 

  45. Dominish, E. et al. ‘Slowing’ and ‘narrowing’ the flow of metals for consumer goods: evaluating opportunities and barriers. Sustainability 10, 1096 (2018).

    Article  Google Scholar 

  46. Pauliuk, S. & Müller, D. B. The role of in-use stocks in the social metabolism and in climate change mitigation. Glob. Environ. Change 24, 132–142 (2014).

    Article  Google Scholar 

  47. Watari, T. et al. Total material requirement for the global energy transition to 2050: a focus on transport and electricity. Resour. Conserv. Recycl. 148, 91–103 (2019).

    Article  Google Scholar 

  48. Watari, T., Cao, Z., Hata, S. & Nansai, K. Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. Nat. Commun. 13, 4158 (2022).

    Article  CAS  Google Scholar 

  49. Mishra, A. et al. Land use change and carbon emissions of a transformation to timber cities. Nat. Commun. 13, 4889 (2022).

    Article  CAS  Google Scholar 

  50. Daigo, I. et al. Potential influences of impurities on properties of recycled carbon steel. ISIJ Int. 61, 498–505 (2021).

    Article  CAS  Google Scholar 

  51. Daehn, K. E., Serrenho, A. C. & Allwood, J. Finding the most efficient way to remove residual copper from steel scrap. Metall. Mater. Trans. B 50, 1225–1240 (2019).

    Article  CAS  Google Scholar 

  52. Vogl, V., Olsson, O. & Nykvist, B. Phasing out the blast furnace to meet global climate targets. Joule 5, 2646–2662 (2021).

    Article  CAS  Google Scholar 

  53. Serrenho, A. C., Mourão, Z. S., Norman, J., Cullen, J. M. & Allwood, J. M. The influence of UK emissions reduction targets on the emissions of the global steel industry. Resour. Conserv. Recycl. 107, 174–184 (2016).

    Article  Google Scholar 

  54. Wang, P., Jiang, Z., Geng, X., Hao, S. & Zhang, X. Quantification of Chinese steel cycle flow: historical status and future options. Resour. Conserv. Recycl. 87, 191–199 (2014).

    Article  Google Scholar 

  55. Lupton, R. C. & Allwood, J. M. Hybrid Sankey diagrams: visual analysis of multidimensional data for understanding resource use. Resour. Conserv. Recycl. 124, 141–151 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by JSPS KAKENHI (21K12344 and 22K18433), the Environment Research and Technology Development Fund (JPMEERF20223001) and JST-Mirai Program (JPMJMI21I5). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We also thank W. Takayanagi for providing helpful comments on graph visualization.

Author information

Authors and Affiliations

Authors

Contributions

T.W. designed the study. T.W. performed the analyses. T.W., S.H., K. Nakajima and K. Nansai prepared the manuscript.

Corresponding author

Correspondence to Takuma Watari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Kazuyo Matsubae, Katerina Kermeli, Mariesse van Sluisveld and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1–11.

Reporting Summary

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watari, T., Hata, S., Nakajima, K. et al. Limited quantity and quality of steel supply in a zero-emission future. Nat Sustain 6, 336–343 (2023). https://doi.org/10.1038/s41893-022-01025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-01025-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing