Abstract
Structural imaging based on magnetic resonance is an integral part of the clinical assessment of patients with suspected Alzheimer dementia. Prospective data on the natural history of change in structural markers from preclinical to overt stages of Alzheimer disease are radically changing how the disease is conceptualized, and will influence its future diagnosis and treatment. Atrophy of medial temporal structures is now considered to be a valid diagnostic marker at the mild cognitive impairment stage. Structural imaging is also included in diagnostic criteria for the most prevalent non-Alzheimer dementias, reflecting its value in differential diagnosis. In addition, rates of whole-brain and hippocampal atrophy are sensitive markers of neurodegeneration, and are increasingly used as outcome measures in trials of potentially disease-modifying therapies. Large multicenter studies are currently investigating the value of other imaging and nonimaging markers as adjuncts to clinical assessment in diagnosis and monitoring of progression. The utility of structural imaging and other markers will be increased by standardization of acquisition and analysis methods, and by development of robust algorithms for automated assessment.
Key Points
-
Brain atrophy detected by high-resolution MRI is correlated with both tau deposition and neuropsychological deficits, and is a valid marker of Alzheimer disease (AD) and its progression
-
The degree of atrophy of medial temporal structures such as the hippocampus is a diagnostic marker for AD at the mild cognitive impairment stage
-
Structural imaging markers are included in diagnostic criteria for non-AD dementias, such as vascular dementia, frontotemporal degeneration, dementia with Lewy bodies, and Creutzfeldt–Jakob disease, and can aid differential diagnosis
-
Whole-brain and hippocampal atrophy rates are sensitive markers of progression of neurodegeneration, and are increasingly used as surrogate outcomes in trials of potentially disease-modifying drugs
-
In the near future, imaging and cerebrospinal fluid markers of amyloid deposition and glucose metabolism could be integrated with automated assessment of structural markers for optimal diagnosis and monitoring
This is a preview of subscription content, access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Braak, H. & Braak, E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).
Delacourte, A. et al. The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer's disease. Neurology 52, 1158–1165 (1999).
McKhann, G. et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS–ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34, 939–944 (1984).
Bosscher, L. & Scheltens, P. in Evidence-Based Dementia Practice (eds Qizilbash, N. et al.) 154–162 (Blackwell, Oxford, 2002).
Frisoni, G. B. et al. Neuroimaging tools to rate regional atrophy, subcortical cerebrovascular disease, and regional cerebral blood flow and metabolism: consensus paper of the EADC. J. Neurol. Neurosurg. Psychiatry 74, 1371–1381 (2003).
Ramani, A., Jensen, J. H. & Helpern, J. A. Quantitative MR imaging in Alzheimer disease. Radiology 241, 26–44 (2006).
Whitwell, J. L. et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 71, 743–749 (2008).
Vemuri, P. et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 73, 294–301 (2009).
Thompson, P. M. et al. Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage 22, 1754–1766 (2004).
Vemuri, P. et al. Antemortem MRI based structural abnormality index (STAND)-scores correlated with postmortem Braak neurofibrillary tangle stage. NeuroImage 4, 559–567 (2008).
Thompson, P. M. et al. Dynamics of gray matter loss in Alzheimer's disease. J. Neurosci. 23, 994–1005 (2003).
Scahill, R. I., Schott, J. M., Stevens, J. M., Rossor, M. N. & Fox, N. C. Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc. Natl Acad. Sci. USA 99, 4703–4707 (2002).
Frisoni, G. B. et al. The pilot European Alzheimer's Disease Neuroimaging Initiative of the European Alzheimer's Disease Consortium. Alzheimers Dement. 4, 255–264 (2008).
McDonald, C. R. et al. Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73, 457–465 (2009).
Fox, N. C., Scahill, R. I., Crum, W. R. & Rossor, M. N. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology 52, 1687–1689 (1999).
Josephs, K. A. et al. β-amyloid burden is not associated with rates of brain atrophy. Ann. Neurol. 63, 204–212 (2008).
Schott, J. M. et al. Neuropsychological correlates of whole brain atrophy in Alzheimer's disease. Neuropsychologia 46, 1732–1737 (2008).
Sluimer, J. D. et al. Whole-brain atrophy rate and CSF biomarker levels in MCI and AD: a longitudinal study. Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2008.06.016.
Sluimer, J. D. et al. Whole-brain atrophy rate and cognitive decline: longitudinal MR study of memory clinic patients. Radiology 248, 590–598 (2008).
Cardenas, V. A. et al. Brain atrophy associated with baseline and longitudinal measures of cognition. Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.04.011.
Jack, C. R. Jr et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62, 591–600 (2004).
Morra, J. H. et al. Automated 3D mapping of hippocampal atrophy and its clinical correlates in 400 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. Hum. Brain Mapp. 30, 2766–2788 (2009).
Ridha, B. H. et al. Volumetric MRI and cognitive measures in Alzheimer disease: comparison of markers of progression. J. Neurol. 255, 567–574 (2008).
Hua, X. et al. Optimizing power to track brain degeneration in Alzheimer's disease and mild cognitive impairment with tensor-based morphometry: an ADNI study of 515 subjects. NeuroImage 48, 668–681 (2009).
Ho, A. et al. Comparing 3 Tesla and 1.5 Tesla MRI for tracking Alzheimer's disease progression with tensor-based morphometry. Hum. Brain Mapp. (in press).
Jack, C. R. Jr et al. MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 60, 253–260 (2003).
Jack, C. R. Jr et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain 132, 1355–1365 (2009).
Pike, K. E. et al. β-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 130, 2837–2844 (2007).
Minoshima, S. et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann. Neurol. 42, 85–94 (1997).
Engler, H. et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 129, 2856–2866 (2006).
Ridha, B. H. et al. Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurol. 5, 828–834 (2006).
Fox, N. C. et al. Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images. Lancet 358, 201–205 (2001).
Jack, C. R. et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 9, 119–128 (2010).
Adalsteinsson, E., Sullivan, E. V., Kleinhans, N., Spielman, D. M. & Pfefferbaum, A. Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer's disease. Lancet 355, 1696–1697 (2000).
Kantarci, K. et al. DWI predicts future progression to Alzheimer's disease in amnestic mild cognitive impairment. Neurology 64, 902–904 (2005).
Taoka, T. et al. Diffusion anisotropy and diffusivity of white matter tracts within the temporal stem in Alzheimer disease: evaluation of the “tract of interest” by diffusion tensor tractography. AJNR Am. J. Neuroradiol. 27, 1040–1045 (2006).
Ridha, B. H. et al. Magnetization transfer ratio in Alzheimer disease: comparison with volumetric measurements. Am. J. Neuroradiol. 28, 965–970 (2007).
van der Flier, W. M. et al. Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study. J. Neurol. Neurosurg. Psychiatry 76, 1497–1500 (2005).
Johnson, N. A. et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234, 851–859 (2005).
Alsop, D. C. & Press, D. Z. Activation and baseline changes in functional MRI studies of Alzheimer disease. Neurology 69, 1645–1646 (2007).
Buckner, R. L. et al. Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005).
Sperling, R. A. et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63, 178–188 (2009).
Dubois, B. et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS–ADRDA criteria. Lancet Neurol. 6, 734–746 (2007).
Modrego, P. J. Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment. Curr. Alzheimer Res. 3, 161–170 (2006).
Scheltens, P. et al. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatry 55, 967–972 (1992).
Korf, E. S., Wahlund, L. O., Visser, P. J. & Scheltens, P. Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology 63, 94–100 (2004).
DeCarli, C. et al. Alzheimer's Disease Cooperative Study Group. Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Arch. Neurol. 64, 108–115 (2007).
Duara, R. et al. Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 71, 1986–1992 (2008).
Burton, E. J. et al. Medial temporal lobe atrophy on MRI differentiates Alzheimer's disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain 132, 195–203 (2009).
Bobinski, M. et al. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience 95, 721–725 (2000).
Gosche, K. M., Mortimer, J. A., Smith, C. D., Markesbery, W. R. & Snowdon, D. A. Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology 58, 1476–1482 (2002).
Jack, C. R. Jr et al. Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58, 750–757 (2002).
Shi, F., Liu, B., Zhou, Y., Yu, C. & Jiang, T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: meta-analyses of MRI studies. Hippocampus 19, 1055–1064 (2009).
Barnes, J. et al. Automatic calculation of hippocampal atrophy rates using a hippocampal template and the boundary shift integral. Neurobiol. Aging 28, 1657–1663 (2007).
Yuan, Y., Gu, Z. X. & Wei, W. S. Fluorodeoxyglucose-positron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. Am. J. Neuroradiol. 30, 404–410 (2009).
Visser, P. J., Scheltens, P. & Verhey, F. R. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer's disease? J. Neurol. Neurosurg. Psychiatry 76, 1348–1354 (2005).
Hampel, H. & Broich, K. Enrichment of MCI and early Alzheimer's disease treatment trials using neurochemical and imaging candidate biomarkers. J. Nutr. Health Aging 13, 373–375 (2009).
van de Pol, L. A. et al. Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 77, 439–442 (2006).
Likeman, M. et al. Visual assessment of atrophy on magnetic resonance imaging in the diagnosis of pathologically confirmed young-onset dementias. Arch. Neurol. 62, 1410–1415 (2005).
Bouwman, F. H. et al. CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiol. Aging 28, 1070–1074 (2007).
Klöppel, S. et al. Automatic classification of MR scans in Alzheimer's disease. Brain 131, 681–689 (2008).
Vemuri, P. et al. Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 39, 1186–1197 (2008).
Mueller, S. G. & Weiner, M. W. Selective effect of age, Apo e4, and Alzheimer's disease on hippocampal subfields. Hippocampus 19, 558–564 (2009).
Teipel, S. J. et al. Measurement of basal forebrain atrophy in Alzheimer's disease using MRI. Brain 128, 2626–2644 (2005).
Karas, G. et al. Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease. Am. J. Neuroradiol. 29, 944–949 (2008).
Scheltens, P., Fox, N., Barkhof, F. & De Carli, C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol. 1, 13–21 (2002).
Geroldi, C. et al. The added value of neuropsychologic tests and structural imaging for the etiologic diagnosis of dementia in Italian expert centers. Alzheimer Dis. Assoc. Disord. 22, 309–320 (2008).
Román, G. C. et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS–AIREN International Workshop. Neurology 43, 250–260 (1993).
Neary, D., Snowden, J. & Mann, D. Frontotemporal dementia. Lancet Neurol. 4, 771–780 (2005).
Pereira, J. M. et al. Atrophy patterns in histologic vs clinical groupings of frontotemporal lobar degeneration. Neurology 72, 1653–1660 (2009).
Rohrer, J. D. et al. Patterns of cortical thinning in the language variants of frontotemporal lobar degeneration. Neurology 72, 1562–1569 (2009).
McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65, 1863–1872 (2005).
Barber, R., Ballard, C., McKeith, I. G., Gholkar, A. & O'Brien, J. T. MRI volumetric study of dementia with Lewy bodies: a comparison with AD and vascular dementia. Neurology 54, 1304–1309 (2000).
McKeith, I. et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 6, 305–313 (2007).
Gilman, S. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71, 670–676 (2008).
Schrag, A. et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 54, 697–702 (2000).
Watanabe, H. et al. Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain 125, 1070–1083 (2002).
Paviour, D. C., Price, S. L., Jahanshahi, M., Lees, A. J. & Fox, N. C. Regional brain volumes distinguish PSP, MSA-P, and PD: MRI-based clinico-radiological correlations. Mov. Disord. 21, 989–996 (2006).
Collie, D. A. et al. MRI of Creutzfeldt–Jakob disease: imaging features and recommended MRI protocol. Clin. Radiol. 56, 726–739 (2001).
Tschampa, H. J. et al. MRI in the diagnosis of sporadic Creutzfeldt–Jakob disease: a study on inter-observer agreement. Brain 128, 2026–2033 (2005).
Macfarlane, R. G., Wroe, S. J., Collinge, J., Yousry, T. A. & Jäger, H. R. Neuroimaging findings in human prion disease. J. Neurol. Neurosurg. Psychiatry 78, 664–670 (2007).
Zeidler, M. et al. The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt–Jakob disease. Lancet 355, 1412–1418 (2000).
DeCarli, C. et al. Cerebrovascular and brain morphologic correlates of mild cognitive impairment in the National Heart, Lung, and Blood Institute Twin Study. Arch. Neurol. 58, 643–647 (2001).
Black, S. E., Patterson, C. & Feightner, J. Preventing dementia. Can. J. Neurol. Sci. 28, S56–S66 (2001).
de Groot, J. C. et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann. Neurol. 47, 145–151 (2000).
Schmidt, R., Petrovic, K., Ropele, S., Enzinger, C. & Fazekas, F. Progression of leukoaraiosis and cognition. Stroke 38, 2619–2625 (2007).
Frisoni, G. B., Galluzzi, S., Pantoni, L. & Filippi, M. The effect of white matter lesions on cognition in the elderly—small but detectable. Nat. Clin. Pract. Neurol. 3, 620–627 (2007).
Schmidt, R. et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. Ann. Neurol. 58, 610–616 (2005).
Vermeer, S. E. et al. Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med. 348, 1215–1222 (2003).
Snowdon, D. A. et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277, 813–817 (1997).
Cordonnier, C. et al. Prevalence and severity of microbleeds in a memory clinic setting. Neurology 66, 1356–1360 (2006).
Henneman, W. J. et al. MRI biomarkers of vascular damage and atrophy predicting mortality in a memory clinic population. Stroke 40, 492–498 (2009).
Goos, J. D. et al. Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke 40, 3455–3460 (2009).
Fleming, T. R. Surrogate endpoints and FDA's accelerated approval process. Health Aff. (Millwood) 24, 67–78 (2005).
Prentice, R. L. Surrogate endpoints in clinical trials: definition and operational criteria. Stat. Med. 8, 431–440 (1989).
Fox, N. C., Cousens, S., Scahill, R., Harvey, R. J. & Rossor, M. N. Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease: power calculations and estimates of sample size to detect treatment effects. Arch. Neurol. 57, 339–344 (2000).
Evans, M. C. et al. Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations. Eur. Radiol. doi: 10.1007/s00330-009-1581–1585.
Gauthier, S. et al. Effect of tramiprosate in patients with mild-to-moderate Alzheimer's disease: exploratory analyses of the MRI sub-group of the Alphase study. J. Nutr. Health Aging 13, 550–557 (2009).
Nestor, S. M. et al. Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database. Brain 131, 2443–2454 (2008).
Ridha, B. H. et al. Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurol. 5, 828–834 (2006).
Chételat, G. et al. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. Neuroimage 27, 934–946 (2005).
Driscoll, I. et al. Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 72, 1906–1913 (2009).
Hampel, H. et al. Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch. Neurol. 62, 770–773 (2005).
Geuze, E., Vermetten, E. & Bremner, J. D. MR-based in vivo hippocampal volumetrics: 1. Review of methodologies currently employed. Mol. Psychiatry 10, 147–159 (2005).
Schott, J. M. et al. Measuring atrophy in Alzheimer disease: a serial MRI study over 6 and 12 months. Neurology 65, 119–124 (2005).
Fox, N. C. & Kennedy, J. Structural imaging markers for therapeutic trials in Alzheimer's disease. J. Nutr. Health Aging 13, 350–352 (2009).
Schuff, N. et al. MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain 132, 1067–1077 (2009).
van de Pol, L. A. et al. Improved reliability of hippocampal atrophy rate measurement in mild cognitive impairment using fluid registration. Neuroimage 34, 1036–1041 (2007).
Colliot, O. et al. Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248, 194–201 (2008).
Morra, J. H. et al. Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer's disease mild cognitive impairment, and elderly controls. Neuroimage 43, 59–68 (2008).
Khan, A. R., Wang, L. & Beg, M. F. FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using Large Deformation Diffeomorphic Metric Mapping. Neuroimage 41, 735–746 (2008).
Fox, N. C. et al. Effects of Aβ immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64, 1563–1572 (2005).
Frisoni, G. B. & Delacourte, A. Neuroimaging outcomes in clinical trials in Alzheimer's disease. J. Nutr. Health Aging 13, 209–212 (2009).
[No authors listed] Prediction of cognitive properties of new drug candidates for neurodegenerative diseases in early clinical development (PHARMA-COG) [online], (2008).
Luxenberg, J. S., Haxby, J. V., Creasey, H., Sundaram, M. & Rapoport, S. I. Rate of ventricular enlargement in dementia of the Alzheimer type correlates with rate of neuropsychological deterioration. Neurology 37, 1135–1140 (1987).
DeCarli, C. et al. Longitudinal changes in lateral ventricular volume in patients with dementia of the Alzheimer type. Neurology 42, 2029–2036 (1992).
Chan, D. et al. Change in rates of cerebral atrophy over time in early-onset Alzheimer's disease: longitudinal MRI study. Lancet 362, 1121–1122 (2003).
Schuff, N. et al. Hippocampal Measurements for ADNI [online], (2009).
Hashimoto, M. et al. Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer's disease? Am. J. Psychiatry 162, 676–682 (2005).
Krishnan, K. R. et al. Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer's disease. Am. J. Psychiatry 160, 2003–2011 (2003).
Jack, C. R. Jr et al. Members of the Alzheimer's Disease Cooperative Study (ADCS). Longitudinal MRI findings from the vitamin E and donepezil treatment study for MCI. Neurobiol. Aging 29, 1285–1295 (2008).
Fox, N. C. & Freeborough, P. A. Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer's disease. J. Magn. Reson. Imaging 7, 1069–1075 (1997).
Kaye, J. A. et al. Asynchronous regional brain volume losses in presymptomatic to moderate AD. J. Alzheimers Dis. 8, 51–56 (2005).
Apostolova, L. G. et al. 3D mapping of Mini-Mental State Examination performance in clinical and pre-clinical Alzheimer's disease. Alzheimer Dis. Assoc. Disord. 20, 224–231 (2006).
Apostolova, L. G. & Thompson, P. M. Mapping progressive brain structural changes in early Alzheimer's disease and mild cognitive impairment. Neuropsychologia 46, 1597–1612 (2008).
Fotenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C. & Buckner, R. L. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64, 1032–1039 (2005).
Jack, C. R. Jr et al. Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology 70, 1740–1752 (2008).
Frisoni, G. B., Prestia, A., Rasser, P. E., Bonetti, M. & Thompson, P. M. In vivo mapping of incremental cortical atrophy from incipient to overt Alzheimer's disease. J. Neurol. 256, 916–924 (2009).
Frisoni, G. B. et al. Preliminary evidence of validity of the revised criteria for Alzheimer disease diagnosis: report of 2 cases. Alzheimer Dis. Assoc. Disord. doi: 10.1097/WAD.0b013e3181a1fd34.
Bouwman, F. H. et al. New research criteria for the diagnosis of Alzheimer's disease applied in a memory clinic population. Alzheimers Dement. 4, 327–328 (2008).
Landau, S. M. et al. Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.07.002.
Okello, A. et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 73, 754–760 (2009).
Kantarci, K. et al. Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 248, 210–220 (2008).
Zhang, Y. et al. White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI. Brain 132, 2579–2592 (2009).
[No authors listed] SOPs: harmonization of protocols for the manual tracing of the hippocampus development and validation of a unified standard protocol: an EADC–ADNI joint effort. http://www.centroalzheimer.org/sito/ip_sops_e.php (2008).
Herholz, K. et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17, 302–316 (2002).
Miller, G. Alzheimer's biomarker initiative hits its stride. Longitudinal Alzhemer's studies go global. Science 326, 386–389 (2009).
Neary, D. et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51, 1546–1554 (1998).
Barnes, J. et al. A meta-analysis of hippocampal atrophy rates in Alzheimer's disease. Neurobiol. Aging 30, 1711–1723 (2009).
Henneman, W. J. et al. Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72, 999–1007 (2009).
Sluimer, J. D. et al. Whole-brain atrophy rate in Alzheimer disease: identifying fast progressors. Neurology 70, 1836–1841 (2008).
The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and National Institute on Aging Working Group. Consensus Report of the Working Group on: “Molecular and Biochemical Markers of Alzheimer's Disease”. Neurobiol. Aging 19, 109–116 (1998).
Lerch, J. P. et al. Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb. Cortex 15, 995–1001 (2005).
Acknowledgements
Anna Caroli, Enrica Cavedo, Rossana Ganzola, Marco Lorenzi, Michela Pievani, Annapaola Prestia, Alberto Redolfi and Cristina Scarpazza helped in the literature review, Rossana Ganzola helped in the typesetting of the manuscript, and Alberto Redolfi produced the maps of Figure 4. G. B. Frisoni was supported by FP7 neuGRID, outGRID and IMI Pharma-Cog. N. C. Fox is supported by Medical Research Council grants G0801306 and G0601846, NIH grant U01 AG024904, Alzheimer Research Trust grant ART/RF/2007/1 and the National Institute for Health Research. C. R. Jack is supported by National Institute on Aging grant AG11378 and the Alexander Family Alzheimer's Disease Research Professorship. P. M. Thompson was supported by NIH grants EB007813, EB008281, EB008432, HD050735, AG020098, P41 RR013642 and M01 RR000865.
Author information
Authors and Affiliations
Ethics declarations
Competing interests
N. C. Fox has received payment for consultancy or for conducting studies from Abbott Laboratories, Elan Pharmaceuticals, Eisai, Eli Lilly, GE Healthcare, IXICO, Lundbeck, Pfizer, Sanofi-Aventis and Wyeth Pharmaceuticals. The other authors declare no competing interests.
Supplementary information
Supplementary Table 1
Rates of brain atrophy and ventricular enlargement in Alzheimer disease. (DOC 117 kb)
Rights and permissions
About this article
Cite this article
Frisoni, G., Fox, N., Jack, C. et al. The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6, 67–77 (2010). https://doi.org/10.1038/nrneurol.2009.215
Issue Date:
DOI: https://doi.org/10.1038/nrneurol.2009.215
This article is cited by
-
Blood biomarkers of neurodegeneration associate differently with amyloid deposition, medial temporal atrophy, and cerebrovascular changes in APOE ε4-enriched cognitively unimpaired elderly
Alzheimer's Research & Therapy (2024)
-
Multimodal diagnosis model of Alzheimer’s disease based on improved Transformer
BioMedical Engineering OnLine (2024)
-
Comparing a pre-defined versus deep learning approach for extracting brain atrophy patterns to predict cognitive decline due to Alzheimer’s disease in patients with mild cognitive symptoms
Alzheimer's Research & Therapy (2024)
-
Cortical folding correlates to aging and Alzheimer’s Disease’s cognitive and CSF biomarkers
Scientific Reports (2024)
-
Life course plasma metabolomic signatures of genetic liability to Alzheimer’s disease
Scientific Reports (2024)