Ageing and neuronal vulnerability | Nature Reviews Neuroscience
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ageing and neuronal vulnerability

Key Points

  • Ageing affects neurons as much as it does cells in other organ systems. During ageing, neurons experience increased amounts of oxidative stress, perturbed energy homeostasis, accumulation of damaged proteins and lesions in their DNA.

  • Studies of mutations in the genes that cause Huntington's disease or early-onset forms of Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis have provided evidence that the defective genes exacerbate age-related processes in neurons, including aggregation of pathogenic proteins, oxidative stress and perturbed cellular ion homeostasis.

  • The physical and molecular characteristics of neurons, their functional properties and their location in neural circuits are all likely to influence their fate during ageing. Examples include differences in relative vulnerabilities to excitotoxicity, metabolic stress and neurotoxins.

  • Neurons have an array of mechanisms that might protect them against the adversities of ageing and neurodegenerative disorders, such as antioxidant defences, protein chaperones that prevent protein aggregation and neurotrophic factors that stabilize ion homeostasis and mitochondrial function.

  • Synapses are regions of neurons that are particularly vulnerable to ageing and neurodegenerative disorders. They are prone to excitotoxic damage, as well as damage by pathogenic proteins such as amyloid-β peptide and mutant huntingtin.

  • Data from studies of animal models and human populations suggest that factors that promote healthy ageing, such as regular exercise and reduced energy diets, might also protect the nervous system against neurodegenerative disorders.

Abstract

Everyone ages, but only some will develop a neurodegenerative disorder in the process. Disease might occur when cells fail to respond adaptively to age-related increases in oxidative, metabolic and ionic stress, thereby resulting in the accumulation of damaged proteins, DNA and membranes. Determinants of neuronal vulnerability might include cell size and location, metabolism of disease-specific proteins and a repertoire of signal transduction pathways and stress resistance mechanisms. Emerging evidence on protein interaction networks that monitor and respond to the normal ageing process suggests that successful neural ageing is possible for most people, but also cautions that cures for neurodegenerative disorders are unlikely in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The who, where and when of neuronal death in age-related neurodegenerative disorders.
Figure 2: The nervous system can respond adaptively, or can succumb, to ageing.
Figure 3: The sensitive synapse.
Figure 4: Once triggered, the death of neurons is programmed.
Figure 5: Counteracting ageing by stimulating beneficial cellular stress responses.

Similar content being viewed by others

References

  1. Hofer, S. M., Berg, S. & Era, P. Evaluating the interdependence of aging-related changes in visual and auditory acuity, balance, and cognitive functioning. Psychol. Aging 18, 285–305 (2003).

    Article  PubMed  Google Scholar 

  2. Mattson, M. P. Pathways towards and away from Alzheimer's disease. Nature 430, 631–639 (2004). This review integrates information on the molecular pathogenesis of AD and efforts to prevent and treat this disorder.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cookson, M. R. The biochemistry of Parkinson's disease. Annu. Rev. Biochem. 74, 29–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Moore, D. J., West, A. B., Dawson, V. L. & Dawson, T. M. Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 27, 57–87 (2005). Reviews the involvement of mitochondrial dysfunction and perturbed ubiquitin-mediated proteolysis in PD.

    Article  CAS  Google Scholar 

  5. Sieradzan, K. A. & Mann, D. M. The selective vulnerability of nerve cells in Huntington's disease. Neuropathol. Appl. Neurobiol. 27, 1–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Cleveland, D. W. & Rothstein, J. D. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nature Rev. Neurosci. 2, 806–819 (2001).

    Article  CAS  Google Scholar 

  7. Serrano, F. & Klann, E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res. Rev. 3, 431–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Zecca, L., Youdim, M. B., Riederer, P., Connor, J. R. & Crichton, R. R. Iron, brain ageing and neurodegenerative disorders. Nature Rev. Neurosci. 5, 863–873 (2004).

    Article  CAS  Google Scholar 

  9. Ames, B. N. Delaying the mitochondrial decay of aging. Ann. NY Acad. Sci. 1019, 406–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Gray, D. A., Tsirigotis, M. & Woulfe, J. Ubiquitin, proteasomes, and the aging brain. Sci. Aging Knowledge Environ. RE6 27 Aug 2003.

  11. Trojanowski, J. Q. & Mattson, M. P. Overview of protein aggregation in single, double, and triple neurodegenerative brain amyloidoses. Neuromolecular Med. 4, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kyng, K. J. & Bohr, V. A. Gene expression and DNA repair in progeroid syndromes and human aging. Ageing Res. Rev. 4, 579–602 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Butler, R. N. et al. Longevity genes: from primitive organisms to humans. J. Gerontol. A Biol. Sci. Med. Sci. 58, 581–584 (2003).

    Article  PubMed  Google Scholar 

  15. Wolkow, C. A. Life span: getting the signal from the nervous system. Trends Neurosci. 25, 212–216 (2002). Describes how insulin-like signalling in the nervous system might regulate ageing and determine lifespan.

    Article  CAS  PubMed  Google Scholar 

  16. Mattson, M. P. Methylation and acetylation in nervous system development and neurodegenerative disorders. Ageing Res. Rev. 2, 329–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Yehuda, S., Rabinovitz, S., Carasso, R. L. & Mostofsky, D. I. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23, 843–853 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Floyd, R. A. & Hensley, K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23, 795–807 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Jenner, P. Oxidative stress in Parkinson's disease. Ann. Neurol. 53, S26–S36 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Pedersen, W. A. et al. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 44, 819–824 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Rakhit, R. et al. Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J. Biol. Chem. 279, 15499–15504 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004). Describes the degradation of wild-type α-synuclein by chaperone-mediated autophagy, and the impairment of this process by mutant forms of the protein.

    Article  CAS  PubMed  Google Scholar 

  23. Grondin, R. et al. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125, 2191–2201 (2002).

    Article  PubMed  Google Scholar 

  24. Zuccato, C. et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genet. 35, 76–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Weindruch, R. & Sohal, R. S. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N. Engl. J. Med. 337, 986–994 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heilbronn, L. K. & Ravussin, E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am. J. Clin. Nutr. 78, 361–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Mattison, J. A., Lane, M. A., Roth, G. S. & Ingram, D. K. Calorie restriction in rhesus monkeys. Exp. Gerontol. 38, 35–46 (2003).

    Article  PubMed  Google Scholar 

  28. Fontana, L., Meyer, T. E., Klein, S. & Holloszy, J. O. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc. Natl Acad. Sci. USA 101, 6659–6663 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mattson, M. P. Energy intake, meal frequency, and health: a neurobiological perspective. Annu. Rev. Nutr. 25, 237–260 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Patel, N. V. et al. Caloric restriction attenuates Aβ-deposition in Alzheimer transgenic models. Neurobiol. Aging 26, 995–1000 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Maswood, N. et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc. Natl Acad. Sci. USA 101, 18171–18176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duan, W. et al. Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl Acad. Sci. USA 100, 2911–2916 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, Z. F. & Mattson, M. P. Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J. Neurosci. Res. 57, 830–839 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Mattson, M. P., Maudsley, S. & Martin, B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 27, 589–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Barja, G. Free radicals and aging. Trends Neurosci. 27, 595–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Cotman, C. W. & Berchtold, N. C. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Spires, T. L. Environmental enrichment rescues protein deficits in a mouse model of Huntington's disease, indicating a possible disease mechanism. J. Neurosci. 24, 2270–2276 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, D. et al. Mitochondrial UCP4 induces a glycolytic shift in energy metabolism and increases the resistance of neurons to oxidative stress. Neuromolecular Med. (in the press).

  39. Parker, J. A. et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genet. 37, 349–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Morrison, B. M., Hof, P. R. & Morrison, J. H. Determinants of neuronal vulnerability in neurodegenerative diseases. Ann. Neurol. 44, S32–S44 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Smith, D. E., Saji, M., Joh, T. H., Reis, D. J. & Pickel, V. M. Ibotenic acid-induced lesions of striatal target and projection neurons: ultrastructural manifestations in dopaminergic and non-dopaminergic neurons and in glia. Histol. Histopathol. 2, 251–263 (1987).

    CAS  PubMed  Google Scholar 

  42. Mandelkow, E. M., Stamer, K., Vogel, R., Thies, E. & Mandelkow, E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol. Aging 24, 1079–1085 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Bayatti, N. & Behl, C. The neuroprotective actions of corticotropin releasing hormone. Ageing Res. Rev. 4, 258–270 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Ishunina, T. A. & Swaab, D. F. Neurohypophyseal peptides in aging and Alzheimer's disease. Ageing Res. Rev. 1, 537–558 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Braak, H. & Braak, E. Evolution of neuronal changes in the course of Alzheimer's disease. J. Neural Transm. Suppl. 53, 127–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  PubMed  Google Scholar 

  47. Mills, K. R. The natural history of central motor abnormalities in amyotrophic lateral sclerosis. Brain 126, 2558–2566 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Yuan, J. & Yankner, B. A. Apoptosis in the nervous system. Nature 407, 802–809 (2000). Reviews evidence that supports a role for apoptosis in the pathogenesis of neurodegenerative disorders.

    Article  CAS  PubMed  Google Scholar 

  49. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nature Rev. Mol. Cell Biol. 1, 120–129 (2000).

    Article  CAS  Google Scholar 

  50. Miller, F. D., Pozniak, C. D. & Walsh, G. S. Neuronal life and death: an essential role for the p53 family. Cell Death Differ. 7, 880–888 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Tanaka, Y. et al. Inducible expression of mutant α-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet. 10, 919–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Akhtar, R. S., Ness, J. M. & Roth, K. A. Bcl-2 family regulation of neuronal development and neurodegeneration. Biochim. Biophys. Acta 1644, 189–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Cheung, E. C. et al. Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J. Neurosci. 25, 1324–1334 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, K. K. Calpain and caspase: can you tell the difference? Trends Neurosci. 23, 20–26 (2000).

    Article  PubMed  Google Scholar 

  55. Stefanis, L. Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 11, 50–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Chan, S. L. et al. Presenilin-1 mutations sensitize neurons to DNA damage-induced death by a mechanism involving perturbed calcium homeostasis and activation of calpains and caspase-12. Neurobiol. Dis. 11, 2–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Brown, D. & Tatton, N. Apoptosis in Parkinson's disease: signals for neuronal degradation. Ann. Neurol. 53 (Suppl. 3), S61–S70 (2003).

    PubMed  Google Scholar 

  58. Crocker, S. J. et al. Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson's disease. J. Neurosci. 23, 4081–4091 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gafni, J. & Ellerby, L. M. Calpain activation in Huntington's disease. J. Neurosci. 22, 4842–4849 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Friedlander, R. M. Apoptosis and caspases in neurodegenerative diseases. N. Engl. J. Med. 348, 1365–1375 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Mattson, M. P. & Kroemer, G. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol. Med. 9, 196–205 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Glazner, G. W. et al. Endoplasmic reticulum D-myo-inositol 1,4,5-trisphosphate-sensitive stores regulate nuclear factor-κB binding activity in a calcium-independent manner. J. Biol. Chem. 276, 22461–22467 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Milhavet, O. et al. Involvement of Gadd153 in the pathogenic action of presenilin-1 mutations. J. Neurochem. 83, 673–681 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Boehning, D. et al. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nature Cell Biol. 5, 1051–1061 (2003).

    Article  PubMed  Google Scholar 

  65. Culmsee, C. & Mattson, M. P. p53 in neuronal apoptosis. Biochem. Biophys. Res. Commun. 331, 761–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Kruman, I. et al. Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 17, 5089–5100 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bruckner, S. R., Perry, G. & Estus, S. 4-hydroxynonenal contributes to NGF withdrawal-induced neuronal apoptosis. J. Neurochem. 85, 999–1005 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Zhou, H., Li, X. M., Meinkoth, J. & Pittman, R. N. Akt regulates cell survival and apoptosis at a postmitochondrial level. J. Cell Biol. 151, 483–494 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cutler, R. G. et al. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 2070–2075 (2004). Links age-related alterations in the metabolism of membrane lipids to oxidative stress and neuronal degeneration in AD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haughey, N. J. et al. Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann. Neurol. 55, 257–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Cutler, R. G. et al. Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann. Neurol. 52, 448–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. White, L. D. & Barone, S. Jr Qualitative and quantitative estimates of apoptosis from birth to senescence in the rat brain. Cell Death Differ. 8, 345–356 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Hiona, A. & Leeuwenburgh, C. Life-long caloric restriction counteracts apoptotic effects of aging in the brain and bolsters the action of apoptosis inhibitors. Neurobiol. Aging. 26 Sep 2006 (doi: 10.1016/j.neurobiolaging.2005.08.006).

  74. Kempermann, G., Kuhn, H. G. & Gage, F. H. Experience-induced neurogenesis in the senescent dentate gyrus. J. Neurosci. 18, 3206–3212 (1998). Evidence that age-related declines in hippocampal neurogenesis can be counteracted by cognitive stimulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun, W. et al. Programmed cell death of adult-generated hippocampal neurons is mediated by the proapoptotic gene Bax. J. Neurosci. 24, 11205–11213 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Haughey, N. J. et al. Disruption of neurogenesis by amyloid β-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. J. Neurochem. 83, 1509–1524 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Jin, K. et al. Increased hippocampal neurogenesis in Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 343–347 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Mattson, M. P. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 3, 65–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Ben-Ari, Y. & Cossart, R. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 23, 580–587 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Perl, T. M. et al. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N. Engl. J. Med. 323, 1631–1633 (1990).

    Article  Google Scholar 

  81. Kisby, G. E., Ellison, M. & Spencer, P. S. Content of the neurotoxins cycasin (methylazoxymethanol β-D-glucoside) and BMAA (β-N-methylamino-L-alanine) in cycad flour prepared by Guam Chamorros. Neurology 42, 1336–1340 (1992).

    Article  CAS  PubMed  Google Scholar 

  82. Langston, J. W., Ballard, P., Tetrud, J. W. & Irwin, I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980 (1983). First direct evidence that an environmental neurotoxin can cause parkinsonism.

    Article  CAS  PubMed  Google Scholar 

  83. Panov, A. et al. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication. J. Biol. Chem. 280, 42026–42035 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Ludolph, A. C., He, F., Spencer, P. S., Hammerstad, J. & Sabri, M. 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Can. J. Neurol. Sci. 18, 492–498 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Berridge, M. J., Bootman, M. D. & Roderick, H. L. Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell Biol. 4, 517–529 (2003).

    Article  CAS  Google Scholar 

  86. Toescu, E. C., Verkhratsky, A. & Landfield, P. W. Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci. 27, 614–620 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Guo, Q. et al. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Med. 5, 101–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Schneider, I. et al. Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J. Biol. Chem. 276, 11539–11544 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Martinez, J., Moeller, I., Erdjument-Bromage, H., Tempst, P. & Lauring, B. Parkinson's disease-associated α-synuclein is a calmodulin substrate. J. Biol. Chem. 278, 17379–17387 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Tang, T. S. et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc. Natl Acad. Sci. USA 102, 2602–2607 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Smith, R. G. et al. Altered muscle calcium channel binding kinetics in autoimmune motoneuron disease. Muscle Nerve 18, 620–627 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Von Lewinski, F. & Keller, B. U. Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci. 28, 494–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Mattson, M. P., Rychlik, B., Chu, C. & Christakos, S. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron 6, 41–51 (1991).

    Article  CAS  PubMed  Google Scholar 

  94. Magloczky, Z. & Freund, T. F. Selective neuronal death in the contralateral hippocampus following unilateral kainate injections into the CA3 subfield. Neuroscience 56, 317–335 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Guela, C. et al. Loss of calbindin-D28k from aging human cholinergic basal forebrain: relation to neuronal loss. J. Comp. Neurol. 455, 249–259 (2003).

    Article  CAS  Google Scholar 

  96. Thorns, V., Licastro, F. & Masliah, E. Locally reduced levels of acidic FGF lead to decreased expression of 28-kDa calbindin and contribute to the selective vulnerability of the neurons in the entorhinal cortex in Alzheimer's disease. Neuropathology 21, 203–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Iacopino, A. M. & Christakos, S. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc. Natl Acad. Sci. USA 87, 4078–4082 (1990). Evidence that age- and neuron-specific changes in calcium-binding proteins are associated with SNV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alexianu, M. E. et al. The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. 36, 846–858 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Ikonomovic, M. D. et al. Distribution of glutamate receptor subunit NMDAR1 in the hippocampus of normal elderly and patients with Alzheimer's disease. Exp. Neurol. 160, 194–204 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Williams, T. L., Day, N. C., Ince, P. G., Kamboj, R. K. & Shaw, P. J. Calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann. Neurol. 42, 200–207 (1997).

    Article  CAS  PubMed  Google Scholar 

  101. Melov, S. Modeling mitochondrial function in aging neurons. Trends Neurosci. 27, 601–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Petit-Taboue, M. C., Landeau, B., Desson, J. F., Desgranges, B. & Baron, J. C. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage 7, 176–184 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Masconi, L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur. J. Nucl. Med. Mol. Imaging 32, 486–510 (2005).

    Article  CAS  Google Scholar 

  104. Dagher, A. Functional imaging in Parkinson's disease. Semin. Neurol. 21, 23–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Feigin, A. et al. Metabolic network abnormalities in early Huntington's disease: an [18F]FDG PET study. J. Nucl. Med. 42, 1591–1595 (2001).

    CAS  PubMed  Google Scholar 

  106. Bubber, P., Haroutunian, V., Fisch, G., Blass, J. P. & Gibson, G. E. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann. Neurol. 57, 695–703 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Smigrodzki, R., Parks, J. & Parker, W. D. High frequency of mitochondrial complex I mutations in Parkinson's disease and aging. Neurobiol. Aging 25, 1273–1281 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Seong, I. S. et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum. Mol. Genet. 14, 2871–2880 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Manfredi, G. & Xu, Z. Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 5, 77–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Brown, M. R., Geddes, J. W. & Sullivan, P. G. Brain region-specific, age-related, alterations in mitochondrial responses to elevated calcium. J. Bioenerg. Biomembr. 36, 401–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Murchison, D., Zawieja, D. C. & Griffith, W. H. Reduced mitochondrial buffering of voltage-gated calcium influx in aged rat basal forebrain neurons. Cell Calcium 36, 61–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Kim, G. W. & Chan, P. H. Oxidative stress and neuronal DNA fragmentation mediate age-dependent vulnerability to the mitochondrial toxin, 3-nitropropionic acid, in the mouse striatum. Neurobiol. Dis. 8, 114–126 (2001). Evidence that neuronal vulnerability to mitochondrial toxins increases with advancing age.

    Article  CAS  PubMed  Google Scholar 

  113. Patel, J. R. & Brewer, G. J. Age-related changes in neuronal glucose uptake in response to glutamate and β-amyloid. J. Neurosci. Res. 72, 527–536 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Klivenyi, P. et al. Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J. Neurosci. 20, 1–7 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Keller, J. N. et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18, 687–697 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bruce-Keller, A. J., Umberger, G., McFall, R. & Mattson, M. P. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann. Neurol. 45, 8–15 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Duan, W. & Mattson, M. P. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res. 57, 195–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Niwa, K., Kazama, K., Younkin, S. G., Carlson, G. A. & Iadecola, C. Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol. Dis. 9, 61–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Lustbader, J. W. et al. ABAD directly links Aβ to mitochondrial toxicity in Alzheimer's disease. Science 304, 448–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Keller, J. N. et al. Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J. Neurosci. 18, 4439–4450 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Guo, Q., Christakos, S., Robinson, N. & Mattson, M. P. Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc. Natl Acad. Sci. USA 95, 3227–3232 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Panov, A. V. et al. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nature Neurosci. 5, 731–736 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Trushina, E. et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell Biol. 24, 8195–8209 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Klivenyi, P. et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Med. 5, 347–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Tarnopolsky, M. A. & Beal, M. F. Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann. Neurol. 49, 561–574 (2001). Reviews evidence that a cellular energy deficit has a key role in the degeneration of motor neurons in HD and ALS.

    Article  CAS  PubMed  Google Scholar 

  126. Szweda, P. A., Camouse, M., Lundberg, K. C., Oberley, T. D. & Szweda, L. I. Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems. Ageing Res. Rev. 2, 383–405 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Gray, D. A. & Woulfe, J. Lipofuscin and aging: a matter of toxic waste. Sci. Aging Knowledge Environ. RE1 2 Feb 2005.

  128. Nixon, R. A. The calpains in aging and aging-related diseases. Ageing Res. Rev. 2, 407–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Bi, X., Yong, A. P., Zhou, J., Gall, C. M. & Lynch, G. Regionally selective changes in brain lysosomes occur in the transition from young adulthood to middle age in rats. Neuroscience 97, 395–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  130. Keller, J. N., Gee, J. & Ding, Q. The proteasome in brain aging. Ageing Res. Rev. 1, 279–293 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Keller, J. N., Hanni, K. B. & Markesbery, W. R. Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech. Ageing Dev. 113, 61–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  132. Lam, Y. A. et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc. Natl Acad. Sci. USA 97, 9902–9906 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McNaught, K. S., Olanow, C. W., Halliwell, B., Isacson, O. & Jenner, P. Failure of the ubiquitin-proteasome system in Parkinson's disease. Nature Rev. Neurosci. 2, 589–594 (2001).

    Article  CAS  Google Scholar 

  134. Sullivan, P. G. et al. Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J. Biol. Chem. 279, 20699–20707 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Bednarski, E., Ribak, C. E. & Lynch, G. Suppression of cathepsins B and L causes a proliferation of lysosomes and the formation of meganeurites in hippocampus. J. Neurosci. 17, 4006–4021 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nixon, R. A. et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64, 113–122 (2005).

    Article  PubMed  Google Scholar 

  137. Bergamini, E., Cavallini, G., Donati, A. & Gori, Z. The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation, and can be intensified pharmacologically. Biomed. Pharmacother. 57, 203–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Maggio, J. E. et al. Reversible in vitro growth of Alzheimer disease β-amyloid plaques by deposition of labeled amyloid peptide. Proc. Natl Acad. Sci. USA 89, 5462–5466 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005). Shows that subtle variations in the environment of pathogenic peptides modifies their self-propagating and neurotoxic properties.

    Article  CAS  PubMed  Google Scholar 

  140. Tanzi, R. E., Moir, R. D. & Wagner, S. L. Clearance of Alzheimer's Aβ peptide: the many roads to perdition. Neuron 43, 605–608 (2004).

    CAS  PubMed  Google Scholar 

  141. Goedert, M. Tau gene mutations and their effects. Mov. Disord. 12, S45–S52 (2005).

    Article  Google Scholar 

  142. Stoothoff, W. H. & Johnson, G. V. Tau phosphorylation: physiological and pathological consequences. Biochim. Biophys. Acta 1739, 280–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Montine, T. J., Amarnath, V., Martin, M. E., Strittmatter, W. J. & Graham, D. G. E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures. Am. J. Pathol. 148, 89–93 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Moore, D. J., West, A. B., Dawson, V. L. & Dawson, T. M. Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 28, 57–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Singleton, A. B. et al. α-Synuclein locus triplication causes Parkinson's disease. Science 302, 841 (2003). The first evidence that a modest increase in the production of α-synuclein is sufficient to cause PD.

    Article  CAS  PubMed  Google Scholar 

  146. Yavich, L., Tanila, H., Vepsalainen, S. & Jakala, P. Role of α-synuclein in presynaptic dopamine recruitment. J. Neurosci. 24, 11165–11170 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bates, G. Huntingtin aggregation and toxicity in Huntington's disease. Lancet 361, 1642–1644 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Fox, J. H. et al. Cystamine increases L-cysteine levels in Huntington's disease transgenic mouse brain and in a PC12 model of polyglutamine aggregation. J. Neurochem. 91, 413–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Wyttenbach, A. et al. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 11, 1137–1151 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Giffard, R. G. et al. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J. Exp. Biol. 207, 3213–3220 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Cohen, F. E. & Kelly, J. W. Therapeutic approaches to protein-misfolding diseases. Nature 426, 905–909 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Zhao, L., Longo-Guess, C., Harris, B. S., Lee, J. W. & Ackerman, S. L. Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nature Genet. 37, 974–979 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Rousseau, E. et al. Targeting expression of expanded polyglutamine proteins to the endoplasmic reticulum or mitochondria prevents their aggregation. Proc. Natl Acad. Sci. USA 101, 9648–9653 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kieran, D. et al. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nature Med. 10, 402–405 (2004). Pharmacological induction of protein chaperones results in therapeutic benefit in a mouse model of ALS.

    Article  CAS  PubMed  Google Scholar 

  155. Siegel, G. J. & Chauhan, N. B. Neurotrophic factors in Alzheimer's and Parkinson's disease brain. Brain Res. Rev. 33, 199–227 (2000).

    Article  CAS  PubMed  Google Scholar 

  156. Dore, S., Kar, S. & Quirion, R. Insulin-like growth factor I protects and rescues hippocampal neurons against β-amyloid- and human amylin-induced toxicity. Proc. Natl Acad. Sci. USA 94, 4772–4777 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Counts, S. E. & Mufson, E. J. The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease. J. Neuropathol. Exp. Neurol. 64, 263–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Gash, D. M., Zhang, Z. & Gerhardt, G. Neuroprotective and neurorestorative properties of GDNF. Ann. Neurol. 44, S121–S125 (1998).

    Article  CAS  PubMed  Google Scholar 

  159. Ross, C. A. Huntington's disease: new paths to pathogenesis. Cell 118, 4–7 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Wilczak, N. & de Keyser, J. Insulin-like growth factor system in amyotrophic lateral sclerosis. Endocr. Dev. 9, 160–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  161. Hattiangady, B., Rao, M. S., Shetty, G. A. & Shetty, A. K. Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp. Neurol. 195, 353–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Gooney, M., Messaudi, E., Maher, F. O., Bramham, C. R. & Lynch, M. A. BDNF-induced LTP in dentate gyrus is impaired with age: analysis of changes in cell signaling events. Neurobiol. Aging 25, 1323–1331 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Monti, B., Berteotti, C. & Contestabile, A. Dysregulation of memory-related proteins in the hippocampus of aged rats and their relation with cognitive impairment. Hippocampus 15, 1041–1049 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Adlard, P. A., Perreau, V. M. & Cotman, C. W. The exercise-induced expression of BDNF within the hippocampus varies across life-span. Neurobiol. Aging 26, 511–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  165. Yurek, D. M. & Fletcher-Turner, A. Lesion-induced increase of BDNF is greater in the striatum of young versus old rat brain. Exp. Neurol. 161, 392–396 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Dore, S., Kar, S., Rowe, W. & Quirion, R. Distribution and levels of [125I]IGF-I, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats. Neuroscience 80, 1033–1040 (1997).

    Article  CAS  PubMed  Google Scholar 

  167. D'Costa, A. P., Xu, X., Ingram, R. L. & Sonntag, W. E. Insulin-like growth factor-1 stimulation of protein synthesis is attenuated in cerebral cortex of aging rats. Neuroscience 65, 805–813 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Woods, A. G., Guthrie, K. M., Kurlawalla, M. A. & Gall, C. M. Deafferentation-induced increases in hippocampal insulin-like growth factor-1 messenger RNA expression are severely attenuated in middle aged and aged rats. Neuroscience 83, 663–668 (1998). Evidence that the capacity of brain cells to increase neurotrophic factor signalling is impaired during ageing.

    Article  CAS  PubMed  Google Scholar 

  169. Sonntag, W. E., Ramsey, M. & Carter, C. S. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res. Rev. 4, 195–212 (2005).

    Article  CAS  PubMed  Google Scholar 

  170. Grondin, R. et al. Glial cell line-derived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J. Neurosci. 23, 1974–1980 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Martinez-Serrano, A., Fischer, W. & Bjorklund, A. Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain. Neuron 15, 473–484 (1995). The authors show that it is possible to recover age-dependent cognitive deficits by transplantation of neurotrophic factor-producing cells into the basal forebrain.

    Article  CAS  PubMed  Google Scholar 

  172. Lopez-Lopez, C., LeRoith, D. & Torres-Aleman, I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc. Natl Acad. Sci. USA 101, 9833–9838 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Murer, M. G., Yan, Q. & Raisman-Vozari, R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog. Neurobiol. 63, 71–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  174. Scott, S. A. & Crutcher, K. A. Nerve growth factor and Alzheimer's disease. Rev. Neurosci. 5, 179–211 (1994).

    Article  CAS  PubMed  Google Scholar 

  175. Zuccato, C. et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Science 293, 493–498 (2001). The first evidence that mutant huntingtin perturbs transcriptional regulation of neurotrophic factor production.

    Article  CAS  PubMed  Google Scholar 

  176. Duan, W. et al. Paroxetine retards disease onset and progression in Huntingtin mutant mice. Ann. Neurol. 55, 590–594 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Dehmelt, L. & Halpain, S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 6, 204 (2005).

    Article  PubMed  Google Scholar 

  178. Al-Chalabi, A. & Miller, C. C. Neurofilaments and neurological disease. Bioessays 25, 346–355 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Trojanowski, J. Q. & Lee, V. M. The role of tau in Alzheimer's disease. Med. Clin. North Am. 86, 615–627 (2002).

    Article  CAS  PubMed  Google Scholar 

  180. Norris, E. H. & Giasson, B. I. Role of oxidative damage in protein aggregation associated with Parkinson's disease and related disorders. Antioxid. Redox Signal. 7, 672–684 (2005).

    Article  PubMed  Google Scholar 

  181. O'Neill, C. et al. Dysfunctional intracellular calcium homoeostasis: a central cause of neurodegeneration in Alzheimer's disease. Biochem. Soc. Symp. 67, 177–194 (2001).

    Article  CAS  Google Scholar 

  182. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Gauthier, L. R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  184. Zhang, B., Tu, P., Abtahian, F. & Trojanowski, J. Q. Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. 139, 1307–1315 (1997). Reports direct evidence that a mutation that causes ALS impairs axonal transport in motor neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hutton, M. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  186. Ishihara, T. et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24, 751–762 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Brandt, R., Hundelt, M. & Shahani, N. Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim. Biophys. Acta 1739, 331–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  188. McGeer, P. L. & McGeer, E. G. Local neuroinflammation and the progression of Alzheimer's disease. J. Neurovirol. 8, 529–538 (2002).

    Article  CAS  PubMed  Google Scholar 

  189. Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H. & Brosnan, C. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 7, 75–83 (1993).

    Article  CAS  PubMed  Google Scholar 

  190. Eikelenboom, P., Hack, C. E., Rozemuller, J. M. & Stam, F. C. Complement activation in amyloid plaques in Alzhiemer's dementia. Virchows Arch. 56, 259–262 (1989).

    Article  CAS  Google Scholar 

  191. Itagaki, S., McGeer, P. L. & Akiyama, H. Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer's disease brain tissue. Neurosci. Lett. 91, 259–264 (1988).

    Article  CAS  PubMed  Google Scholar 

  192. Eikelenboom, P. & Stam. F. C. Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol. (Berl.) 57, 239–242 (1982).

    Article  CAS  Google Scholar 

  193. Nath, A. et al. Autoantibodies to amyloid β-peptide (Aβ) are increased in Alzheimer's disease patients and Aβ antibodies can enhance Aβ neurotoxicity: implications for disease pathogenesis and vaccine development. Neuromolecular Med. 3, 29–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  194. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999). The first evidence that the immune system can be activated to specifically remove amyloid from the brain, suggesting a potential for immunization therapies in the treatment of AD.

    Article  CAS  PubMed  Google Scholar 

  195. Teismann, P. & Schulz, J. B. Cellular pathology of Parkinson's disease: astrocytes, microglia and inflammation. Cell Tissue Res. 318, 149–161 (2004).

    Article  PubMed  Google Scholar 

  196. Sargsyan, S. A., Monk, P. N. & Shaw, P. J. Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia 51, 241–253 (2005).

    Article  PubMed  Google Scholar 

  197. Smith, R. G. et al. Cytotoxicity of immunoglobulins from amyotrophic lateral sclerosis patients on a hybrid motoneuron cell line. Proc. Natl Acad. Sci. USA 91, 3393–3397 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Miller, R. G., Mitchell, J. D., Lyon, M. & Moore, D. H. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Amyotroph. Lateral Scler. Other Motor Neuron Disord. 4, 191–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  199. Reisberg, B. et al. A 24-week open-label extension study of memantine in moderate to severe Alzheimer disease. Arch. Neurol. 63, 49–54 (2006).

    Article  PubMed  Google Scholar 

  200. Wang, J. et al. Caloric restriction attenuates β-amyloid neuropathology in a mouse model of Alzheimer's disease. FASEB J. 19, 659–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Lazarov, O. et al. Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell 120, 701–713 (2005). Reports the first evidence that exercise/cognitive stimulation can enhance clearance of Aβ from the brain.

    Article  CAS  PubMed  Google Scholar 

  202. Lim, G. P. et al. A diet enriched with the ω-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J. Neurosci. 25, 3032–3040 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. DeKosky, S. T. Statin therapy in the treatment of Alzheimer disease: what is the rationale? Am. J. Med. 118, S48–S53 (2005).

    Article  CAS  Google Scholar 

  204. Lipton, S. A. Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer's disease and other neurologic disorders. J. Alzheimers Dis. 6, S61–S74 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Duan, W. et al. p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann. Neurol. 52, 597–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  206. Bae, B. I. et al. p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron 47, 29–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  207. Ellis, A. C. & Rosenfeld, J. The role of creatine in the management of amyotrophic lateral sclerosis and other neurodegenerative disorders. CNS Drugs 18, 967–980 (2004).

    Article  CAS  PubMed  Google Scholar 

  208. Kordower, J. H. et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290, 767–773 (2000). Reports the efficacy of gene therapy in a non-human primate model of PD.

    Article  CAS  PubMed  Google Scholar 

  209. Dobrowolny, G. et al. Muscle expression of a local IGF-1 isoform protects motor neurons in an ALS mouse model. J. Cell Biol. 168, 193–199 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Levy, Y. S., Gilgun-Sherki, Y., Melamed, E. & Offen, D. Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 19, 97–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  211. Gelinas, D. S., DaSilva, K., Fenili, D., St Georger-Hyslop, P. & McLaurin, J. Immunotherapy for Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, S14657–S14662 (2004).

    Article  Google Scholar 

  212. Harper, S. Q. et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl Acad. Sci. USA 102, 5820–5825 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Logroscino, G. et al. Dietary lipids and antioxidants in Parkinson's disease: a population-based, case-control study. Ann. Neurol. 39, 89–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  214. Luchsinger, J. A., Tang, M. X., Shea, S. & Mayeux, R. Caloric intake and the risk of Alzheimer disease. Arch. Neurol. 59, 1258–1263 (2002).

    Article  PubMed  Google Scholar 

  215. Luchsinger, J. A. & Mayeux, R. Dietary factors and Alzheimer's disease. Lancet Neurol. 3, 579–587 (2004).

    Article  PubMed  Google Scholar 

  216. Mattson, M. P. & Shea, T. B. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 26, 137–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  217. Carro, E., Trejo, J. L., Busiguina, S. & Torres-Aleman, J. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J. Neurosci. 21, 5678–5684 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Laurin, D., Verrault, R., Lindsay, J., MacPherson, K. & Rockwood, K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch. Neurol. 58, 498–504 (2001).

    Article  CAS  PubMed  Google Scholar 

  219. Mattson, M. P. & Wan, R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J. Nutr. Biochem. 16, 129–137 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. Jeffery, B., Barlow, T., Moizer, K., Paul, S. & Boyle, C. Amnestic shellfish poison. Food Chem. Toxicol. 42, 545–557 (2004).

    Article  CAS  PubMed  Google Scholar 

  221. Lee, J., Bruce-Keller, A. J., Kruman, Y., Chan, S. L. & Mattson, M. P. 2-Deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J. Neurosci. Res. 57, 48–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  222. Di Monte, D. A. The environment and Parkinson's disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol. 2, 531–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  223. Lee, J. M., Zipfel, G. J. & Choi, D. W. The changing landscape of ischaemic brain injury mechanisms. Nature 399 (Suppl. 6738), A7–A14 (1999).

    Article  CAS  PubMed  Google Scholar 

  224. Youdim, K. A. & Joseph, J. A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic. Biol. Med. 30, 583–594 (2001).

    Article  CAS  PubMed  Google Scholar 

  225. Di Matteo, V. & Esposito, E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Curr. Drug Targets CNS Neurol. Disord. 2, 95–107 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

ALS

Alzheimer's disease

FTDP-17

Huntingtons' disease

Parkinson's disease

FURTHER INFORMATION

Alzheimer's Association

National Parkinson Foundation

ALS Association

Hereditary Disease Foundation

Mattson's homepage

Glossary

Selective neuronal vulnerability

(SNV). The susceptibility of specific populations of neurons that is limited to a region or regions of the nervous system.

Proteasome

A protein complex responsible for degrading intracellular proteins that have been tagged for destruction by the addition of ubiquitin.

Lipid peroxidation

An autocatalytic process in which free radicals attack double bonds in membrane lipids, resulting in structural damage to membranes and the liberation of toxic aldehydes such as 4-hydroxynonenal.

Autophagy

A process in which damaged organelles are degraded within membrane-bound organelles.

Dietary restriction

A decrease in the amount of food consumed over time (caloric restriction) and/or the frequency of meals (intermittent fasting).

Reactive oxygen species

(ROS). Highly reactive oxygen-based molecules with an unpaired electron in their outer orbital that are capable of damaging proteins, lipids and nucleic acids. Examples include hydrogen peroxide and hydroxyl radicals.

Hormesis

A process in which exposure of a cell or organism to a sublethal level of stress increases the resistance of that cell or organism to a subsequent higher and otherwise lethal level of the same or different stress.

Sirtuins

A family of histone deacetylases that have important roles in cellular stress responses and energy metabolism.

Mitochondrial uncoupling proteins

A family of proteins that reside in the mitochondrial inner membrane and promote a proton leak across the membrane, thereby decreasing oxidative phosphorylation and reactive oxygen species production.

Trans-entorhinal region

An area of the brain — located between association cortices and the hippocampus — that is important in the integration of information and learning and memory processes.

Caspases

A family of cysteine proteases that cleave proteins at specific aspartate residues and have a key role in inflammation and mammalian apoptosis.

BCL2

A protein that promotes the survival of neurons by stabilizing mitochondrial membranes and decreasing oxidative stress.

Calpains

Cysteine proteases activated by calcium that cleave various substrates, including cytoskeletal proteins.

Permeability transition pores

Pores in the mitochondrial membranes that are formed by proteins in response to signals that trigger apoptosis.

Ceramides

Membrane lipids that are incorporated into sphingomyelin and are released in response to the activation of sphingomyelinases.

Ion-motive ATPases

Energy-dependent ion pumps in membranes that are essential for the restoration and maintenance of the Na+ and Ca2+ gradients.

Afterhyperpolarization

The membrane hyperpolarization that follows the occurrence of an action potential.

Glutathione peroxidase

An antioxidant enzyme that converts hydrogen peroxide to water.

Mitochondrial manganese superoxide dismutase

An antioxidant enzyme located in mitochondria that converts superoxide anion radicals to hydrogen peroxide.

Lysosome

A membrane-bound organelle with a low pH that contains high concentrations of enzymes that degrade proteins.

Frontotemporal dementia

A neurodegenerative disorder resulting from the degeneration of neurons in the frontal lobe.

Repeat isoform

An isoform of the microtubule-associated protein tau that contains either three or four microtubule-binding domains.

Cytokines

A large class of intercellular signalling proteins that are important in neural–immune system interactions and inflammatory processes.

Complement factors

Proteins that function in innate immunity, often forming pores in membranes, which results in cell death.

Leukocyte adhesion molecules

Proteins located on the surface of vascular endothelial cells that bind to leukocytes, thereby facilitating the passage of the leukocytes across the blood–brain barrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattson, M., Magnus, T. Ageing and neuronal vulnerability. Nat Rev Neurosci 7, 278–294 (2006). https://doi.org/10.1038/nrn1886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1886

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing