Ventral tegmental area: cellular heterogeneity, connectivity and behaviour | Nature Reviews Neuroscience
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ventral tegmental area: cellular heterogeneity, connectivity and behaviour

Key Points

  • Dopamine neurons of the ventral tegmental area (VTA) have been theorized to play a part in various aspects of motivated behaviour

  • These different behaviours may be mediated by different dopamine neurons interacting with specific neuronal networks

  • The outputs of VTA neurons are integrated not only with inputs from several brain structures but also with those from local VTA GABA and glutamate neurons (forming a microcircuitry)

  • Emerging evidence indicates that subpopulations of VTA GABA and glutamate neurons receive afferents from and project to the same brain regions that are connected to VTA dopamine neurons

  • The VTA contains subpopulations of combinatorial neurons that co-release either glutamate or GABA with dopamine, as well as glutamate neurons that co-release GABA

  • Optogenetic approaches in transgenic rodents have revealed discrete VTA neuronal phenotypes and connections that have distinct roles in reinforcement, motivation and learning

Abstract

Dopamine-releasing neurons of the ventral tegmental area (VTA) have central roles in reward-related and goal-directed behaviours. VTA dopamine-releasing neurons are heterogeneous in their afferent and efferent connectivity and, in some cases, release GABA or glutamate in addition to dopamine. Recent findings show that motivational signals arising from the VTA can also be carried by non-dopamine-releasing projection neurons, which have their own specific connectivity. Both dopamine-releasing and non-dopamine-releasing VTA neurons integrate afferent signals with local inhibitory or excitatory inputs to generate particular output firing patterns. Various individual inputs, outputs and local connections have been shown to be sufficient to generate reward- or aversion-related behaviour, indicative of the impressive contribution of this small population of neurons to behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distributions of dopamine- or glutamate-releasing neurons in the ventral tegmental area.
Figure 2: Ultrastructural organization of inputs from ventral tegmental area neurons.
Figure 3: Confirmed inputs onto and outputs from ventral tegmental area neurons.
Figure 4: Contributions of specific ventral tegmental area circuits to motivated behaviour.

Similar content being viewed by others

References

  1. Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B. & Gabrieli, J. D. Reward-motivated learning: mesolimbic activation precedes memory formation. Neuron 50, 507–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Berridge, K. C. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl.) 191, 391–431 (2007).

    Article  CAS  Google Scholar 

  3. Brischoux, F., Chakraborty, S., Brierley, D. I. & Ungless, M. A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl Acad. Sci. USA 106, 4894–4899 (2009). This paper confirmed that dopamine neurons of the VTA are excited by noxious stimuli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salamone, J. D. & Correa, M. The mysterious motivational functions of mesolimbic dopamine. Neuron 76, 470–485 (2012). This thoughtful review described the role of dopamine neurons that innervate the nAcc in motivation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858–873 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Beier, K. T. et al. Circuit architecture of VTA dopamine neurons revealed by systematic input–output mapping. Cell 162, 622–634 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Faget, L. et al. Afferent inputs to neurotransmitter-defined cell types in the ventral tegmental area. Cell Rep. 15, 2796–2808 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ogawa, S. K., Cohen, J. Y., Hwang, D., Uchida, N. & Watabe-Uchida, M. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep. 8, 1105–1118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stamatakis, A. M. et al. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80, 1039–1053 (2013). This was the first article to demonstrate that VTA TH-expressing neurons that innerve the LHb do not release dopamine but release GABA.

    Article  CAS  PubMed  Google Scholar 

  13. Saunders, B. T., Richard, J. M. & Janak, P. H. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Phil. Trans. R. Soc. B 370, 20140210 (2015). This review covered recent experimental approaches to study reward and addiction.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Tan, K. R. et al. GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173–1183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Zessen, R., Phillips, J. L., Budygin, E. A. & Stuber, G. D. Activation of VTA GABA neurons disrupts reward consumption. Neuron 73, 1184–1194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, H. L., Qi, J., Zhang, S., Wang, H. & Morales, M. Rewarding effects of optical stimulation of ventral tegmental area glutamatergic neurons. J. Neurosci. 35, 15948–15954 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berrios, J. et al. Loss of UBE3A from TH-expressing neurons suppresses GABA co-release and enhances VTA-NAc optical self-stimulation. Nat. Commun. 7, 10702 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qi, J. et al. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat. Neurosci. 19, 725–733 (2016). This was the first paper to demonstrate that nAcc GABA interneurons that synapse on MSNs are excited by glutamatergic neurons from the VTA and that this circuit is sufficient to drive aversive behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kabanova, A. et al. Function and developmental origin of a mesocortical inhibitory circuit. Nat. Neurosci. 18, 872–882 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012). Using in vivo recordings of optogenetically identified neurons, this article showed the firing activity of VTA GABA neurons in response to salient stimuli and the contrast between this activity and that of dopamine neurons during the same behavioural paradigm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Root, D. H., Mejias-Aponte, C. A., Qi, J. & Morales, M. Role of glutamatergic projections from ventral tegmental area to lateral habenula in aversive conditioning. J. Neurosci. 34, 13906–13910 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang, S. et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat. Neurosci. 18, 386–392 (2015). This was a comprehensive series of studies demonstrating that VTA dual dopamine–glutamate neurons release dopamine in the nAcc. This was the first demonstration that pools of dopamine vesicles and pools of glutamate vesicles are segregated to different compartments within individual axons in the nAcc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Root, D. H. et al. Single rodent mesohabenular axons release glutamate and GABA. Nat. Neurosci. 17, 1543–1551 (2014). This multidisciplinary study provided the first demonstration that the VTA has neurons that release both glutamate and GABA from a single axon terminal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, X., Qi, J., Yamaguchi, T., Wang, H. L. & Morales, M. Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties. Brain Struct. Funct. 218, 1159–1176 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Lammel, S. et al. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57, 760–773 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Morales, M. & Root, D. H. Glutamate neurons within the midbrain dopamine regions. Neuroscience 282, 60–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi, T., Qi, J., Wang, H. L., Zhang, S. & Morales, M. Glutamatergic and dopaminergic neurons in the mouse ventral tegmental area. Eur. J. Neurosci. 41, 760–772 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lammel, S. et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron 85, 429–438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stuber, G. D., Stamatakis, A. M. & Kantak, P. A. Considerations when using cre-driver rodent lines for studying ventral tegmental area circuitry. Neuron 85, 439–445 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berthet, A. et al. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J. Neurosci. 34, 14304–14317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Margolis, E. B., Lock, H., Hjelmstad, G. O. & Fields, H. L. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J. Physiol. 577, 907–924 (2006). This was the initial study to establish the need for phenotypic characterization of recorded dopamine neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Margolis, E. B., Toy, B., Himmels, P., Morales, M. & Fields, H. L. Identification of rat ventral tegmental area GABAergic neurons. PLoS ONE 7, e42365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Labouèbe, G. et al. RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat. Neurosci. 10, 1559–1568 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. Olson, V. G. & Nestler, E. J. Topographical organization of GABAergic neurons within the ventral tegmental area of the rat. Synapse 61, 87–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, H. L. & Morales, M. Corticotropin-releasing factor binding protein within the ventral tegmental area is expressed in a subset of dopaminergic neurons. J. Comp. Neurol. 509, 302–318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chieng, B., Azriel, Y., Mohammadi, S. & Christie, M. J. Distinct cellular properties of identified dopaminergic and GABAergic neurons in the mouse ventral tegmental area. J. Physiol. 589, 3775–3787 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mercuri, N., Calabresi, P., Stanzione, P. & Bernardi, G. Electrical stimulation of mesencephalic cell groups (A9-A10) produces monosynaptic excitatory potentials in rat frontal cortex. Brain Res. 338, 192–195 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Lavin, A. et al. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J. Neurosci. 25, 5013–5023 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kawano, M. et al. Particular subpopulations of midbrain and hypothalamic dopamine neurons express vesicular glutamate transporter 2 in the rat brain. J. Comp. Neurol. 498, 581–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Yamaguchi, T., Sheen, W. & Morales, M. Glutamatergic neurons are present in the rat ventral tegmental area. Eur. J. Neurosci. 25, 106–118 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yamaguchi, T., Wang, H. L., Li, X., Ng, T. H. & Morales, M. Mesocorticolimbic glutamatergic pathway. J. Neurosci. 31, 8476–8490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hnasko, T. S., Hjelmstad, G. O., Fields, H. L. & Edwards, R. H. Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J. Neurosci. 32, 15076–15085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Root, D. H. et al. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans. Sci. Rep. 6, 30615 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sulzer, D. et al. Dopamine neurons make glutamatergic synapses in vitro. J. Neurosci. 18, 4588–4602 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dal Bo, G. et al. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J. Neurochem. 88, 1398–1405 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Trudeau, L. E. et al. The multilingual nature of dopamine neurons. Prog. Brain Res. 211, 141–164 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamaguchi, T., Wang, H. L. & Morales, M. Glutamate neurons in the substantia nigra compacta and retrorubral field. Eur. J. Neurosci. 38, 3602–3610 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stuber, G. D., Hnasko, T. S., Britt, J. P., Edwards, R. H. & Bonci, A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J. Neurosci. 30, 8229–8233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tecuapetla, F. et al. Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J. Neurosci. 30, 7105–7110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hnasko, T. S. et al. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65, 643–656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bérubé-Carrière, N. et al. Ultrastructural characterization of the mesostriatal dopamine innervation in mice, including two mouse lines of conditional VGLUT2 knockout in dopamine neurons. Eur. J. Neurosci. 35, 527–538 (2012).

    Article  PubMed  Google Scholar 

  52. Moss, J., Ungless, M. A. & Bolam, J. P. Dopaminergic axons in different divisions of the adult rat striatal complex do not express vesicular glutamate transporters. Eur. J. Neurosci. 33, 1205–1211 (2011).

    Article  PubMed  Google Scholar 

  53. Root, D. H. et al. Norepinephrine activates dopamine D4 receptors in the rat lateral habenula. J. Neurosci. 35, 3460–3469 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tritsch, N. X., Oh, W. J., Gu, C. & Sabatini, B. L. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. eLife 3, e01936 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kim, J. I. et al. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science 350, 102–106 (2015). This study showed that midbrain dopamine neurons synthesize GABA in the absence of GADs, the canonical enzymes for GABA synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tritsch, N. X., Granger, A. J. & Sabatini, B. L. Mechanisms and functions of GABA co-release. Nat. Rev. Neurosci. 17, 139–145 (2016). This review described GABA release from dopamine neurons that do not synthesize GABA from glutamate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morales, M. & Pickel, V. M. Insights to drug addiction derived from ultrastructural views of the mesocorticolimbic system. Ann. NY Acad. Sci. 1248, 71–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Yetnikoff, L., Lavezzi, H. N., Reichard, R. A. & Zahm, D. S. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 282, 23–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Yetnikoff, L., Cheng, A. Y., Lavezzi, H. N., Parsley, K. P. & Zahm, D. S. Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: a study in rat. J. Comp. Neurol. 523, 2426–2456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Geisler, S., Derst, C., Veh, R. W. & Zahm, D. S. Glutamatergic afferents of the ventral tegmental area in the rat. J. Neurosci. 27, 5730–5743 (2007). This paper provided mapping of putative glutamatergic neurons innervating the VTA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xia, Y. et al. Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J. Neurosci. 31, 7811–7816 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bocklisch, C. et al. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341, 1521–1525 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Carr, D. B. & Sesack, S. R. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J. Neurosci. 20, 3864–3873 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnson, S. W. & North, R. A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Omelchenko, N. & Sesack, S. R. Ultrastructural analysis of local collaterals of rat ventral tegmental area neurons: GABA phenotype and synapses onto dopamine and GABA cells. Synapse 63, 895–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dobi, A., Margolis, E. B., Wang, H. L., Harvey, B. K. & Morales, M. Glutamatergic and nonglutamatergic neurons of the ventral tegmental area establish local synaptic contacts with dopaminergic and nondopaminergic neurons. J. Neurosci. 30, 218–229 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gantz, S. C., Bunzow, J. R. & Williams, J. T. Spontaneous inhibitory synaptic currents mediated by a G protein-coupled receptor. Neuron 78, 807–812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ford, C. P., Phillips, P. E. & Williams, J. T. The time course of dopamine transmission in the ventral tegmental area. J. Neurosci. 29, 13344–13352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bayer, V. E. & Pickel, V. M. Ultrastructural localization of tyrosine hydroxylase in the rat ventral tegmental area: relationship between immunolabeling density and neuronal associations. J. Neurosci. 10, 2996–3013 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Swanson, L. W. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9, 321–353 (1982).

    Article  CAS  PubMed  Google Scholar 

  71. Aransay, A., Rodríguez-López, C., García-Amado, M., Clascá, F. & Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis. Front. Neuroanat. 9, 59 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Pickel, V. M., Towle, A. C., Joh, T. H. & Chan, J. Gamma-aminobutyric acid in the medial rat nucleus accumbens: ultrastructural localization in neurons receiving monosynaptic input from catecholaminergic afferents. J. Comp. Neurol. 272, 1–14 (1988).

    Article  CAS  PubMed  Google Scholar 

  73. Sesack, S. R., Hawrylak, V. A., Matus, C., Guido, M. A. & Levey, A. I. Dopamine axon varicosities in the prelimbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter. J. Neurosci. 18, 2697–2708 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Taylor, S. R. et al. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J. Comp. Neurol. 522, 3308–3334 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brown, M. T. et al. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492, 452–456 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Chuhma, N., Mingote, S., Moore, H. & Rayport, S. Dopamine neurons control striatal cholinergic neurons via regionally heterogeneous dopamine and glutamate signaling. Neuron 81, 901–912 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mingote, S. et al. Functional connectome analysis of dopamine neuron glutamatergic connections in forebrain regions. J. Neurosci. 35, 16259–16271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Eshel, N., Tian, J., Bukwich, M. & Uchida, N. Dopamine neurons share common response function for reward prediction error. Nat. Neurosci. 19, 479–486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mileykovskiy, B. & Morales, M. Duration of inhibition of ventral tegmental area dopamine neurons encodes a level of conditioned fear. J. Neurosci. 31, 7471–7476 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Tsai, H. C. et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Witten, I. B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, K. M. et al. Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS ONE 7, e33612 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ilango, A. et al. Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J. Neurosci. 34, 817–822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Steinberg, E. E. et al. Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS ONE 9, e94771 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Owesson-White, C. et al. Cue-evoked dopamine release rapidly modulates D2 neurons in the nucleus accumbens during motivated behavior. J. Neurosci. 36, 6011–6021 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McNamara, C. G., Tejero-Cantero, Á., Trouche, S., Campo-Urriza, N. & Dupret, D. Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 17, 1658–1660 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith, C. C. & Greene, R. W. CNS dopamine transmission mediated by noradrenergic innervation. J. Neurosci. 32, 6072–6080 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Borgkvist, A., Malmlöf, T., Feltmann, K., Lindskog, M. & Schilström, B. Dopamine in the hippocampus is cheared by the norepinephrine transporter. Int. J. Neuropsychopharmacol. 15, 531–540 (2012).

    CAS  PubMed  Google Scholar 

  94. Takeuchi, T. et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537, 357–362 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012). This article demonstrated that subsets of dopamine neurons with different projection targets receive inputs from two distinct brain areas and that these inputs are differentially involved in reward or aversion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Steidl, S., Wang, H., Ordonez, M., Zhang, S. & Morales, M. Optogenetic excitation in the ventral tegmental area of glutamatergic or cholinergic inputs from the laterodorsal tegmental area drives reward. Eur. J. Neurosci. http://dx.doi.org/10.1111/ejn.13436 (2016).

  97. Qi, J. et al. A glutamatergic reward input from the dorsal raphe to ventral tegmental area dopamine neurons. Nat. Commun. 5, 5390 (2014). This paper described an instructive collection of experiments combining classical and newly developed techniques to demonstrate that DRN VGLUT3-expressing neurons release glutamate onto dopamine neurons that innervate the nAcc and participate in reward neurocircuitry.

    Article  CAS  PubMed  Google Scholar 

  98. Cohen, J. Y., Amoroso, M. W. & Uchida, N. Serotonergic neurons signal reward and punishment on multiple timescales. eLife 4, e06346 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  99. Tian, J. et al. Distributed and mixed information in monosynaptic inputs to dopamine neurons. Neuron 91, 1374–1389 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stuber, G. D. & Wise, R. A. Lateral hypothalamic circuits for feeding and reward. Nat. Neurosci. 19, 198–205 (2016). This review covered classical and recent findings on the role of the LHT in reward and feeding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Barbano, M. F., Wang, H. L., Morales, M. & Wise, R. A. Feeding and reward are differentially induced by activating GABAergic lateral hypothalamic projections to VTA. J. Neurosci. 36, 2975–2985 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nieh, E. H. et al. Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron 90, 1286–1298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jennings, J. H. et al. Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Birgner, C. et al. VGLUT2 in dopamine neurons is required for psychostimulant-induced behavioral activation. Proc. Natl Acad. Sci. USA 107, 389–394 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Alsiö, J. et al. Enhanced sucrose and cocaine self-administration and cue-induced drug seeking after loss of VGLUT2 in midbrain dopamine neurons in mice. J. Neurosci. 31, 12593–12603 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Cachope, R. & Cheer, J. F. Local control of striatal dopamine release. Front. Behav. Neurosci. 8, 188 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Fields, H. L. & Margolis, E. B. Understanding opioid reward. Trends Neurosci. 38, 217–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Scanziani, M., Gahwiler, B. H. & Charpak, S. Target cell-specific modulation of transmitter release at terminals from a single axon. Proc. Natl Acad. Sci. USA 95, 12004–12009 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maccaferri, G., Toth, K. & McBain, C. J. Target-specific expression of presynaptic mossy fiber plasticity. Science 279, 1368–1370 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Markram, H., Wang, Y. & Tsodyks, M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl Acad. Sci. USA 95, 5323–5328 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Björklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194–202 (2007).

    Article  PubMed  CAS  Google Scholar 

  112. Sanchez-Catalan, M. J., Kaufling, J., Georges, F., Veinante, P. & Barrot, M. The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience 282, 198–216 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Charara, A., Smith, Y. & Parent, A. Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: phaseolus vulgaris-leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry. J. Comp. Neurol. 364, 254–266 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Omelchenko, N. & Sesack, S. R. Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area. J. Comp. Neurol. 483, 217–235 (2005).

    Article  PubMed  Google Scholar 

  115. Omelchenko, N., Bell, R. & Sesack, S. R. Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area. Eur. J. Neurosci. 30, 1239–1250 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Omelchenko, N. & Sesack, S. R. Periaqueductal gray afferents synapse onto dopamine and GABA neurons in the rat ventral tegmental area. J. Neurosci. Res. 88, 981–991 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Georges, F. & Aston-Jones, G. Potent regulation of midbrain dopamine neurons by the bed nucleus of the stria terminalis. J. Neurosci. 21, RC160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B. & Holland, P. C. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61, 786–800 (2009). This was the first report of a previously unknown, major GABA input onto midbrain dopamine neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kaufling, J., Veinante, P., Pawlowski, S. A., Freund-Mercier, M. J. & Barrot, M. γ-Aminobutyric acid cells with cocaine-induced ΔFosB in the ventral tegmental area innervate mesolimbic neurons. Biol. Psychiatry 67, 88–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Nieh, E. H. et al. Decoding neural circuits that control compulsive sucrose seeking. Cell 160, 528–541 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hjelmstad, G. O., Xia, Y., Margolis, E. B. & Fields, H. L. Opioid modulation of ventral pallidal afferents to ventral tegmental area neurons. J. Neurosci. 33, 6454–6459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kudo, T. et al. Three types of neurochemical projection from the bed nucleus of the stria terminalis to the ventral tegmental area in adult mice. J. Neurosci. 32, 18035–18046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Seroogy, K. et al. A subpopulation of dopaminergic neurons in rat ventral mesencephalon contains both neurotensin and cholecystokinin. Brain Res. 455, 88–98 (1988).

    Article  CAS  PubMed  Google Scholar 

  124. Jayaraman, A., Nishimori, T., Dobner, P. & Uhl, G. R. Cholecystokinin and neurotensin mRNAs are differentially expressed in subnuclei of the ventral tegmental area. J. Comp. Neurol. 296, 291–302 (1990).

    Article  CAS  PubMed  Google Scholar 

  125. Bayer, V. E., Towle, A. C. & Pickel, V. M. Ultrastructural localization of neurotensin-like immunoreactivity within dense core vesicles in perikarya, but not terminals, colocalizing tyrosine hydroxylase in the rat ventral tegmental area. J. Comp. Neurol. 311, 179–196 (1991).

    Article  CAS  PubMed  Google Scholar 

  126. Grieder, T. E. et al. VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation. Nat. Neurosci. 17, 1751–1758 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Seroogy, K. B. et al. Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J. Comp. Neurol. 342, 321–334 (1994).

    Article  CAS  PubMed  Google Scholar 

  128. Rogers, J. H. Immunohistochemical markers in rat brain: colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase. Brain Res. 587, 203–210 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Liang, C. L., Sinton, C. M. & German, D. C. Midbrain dopaminergic neurons in the mouse: co-localization with Calbindin-D28K and calretinin. Neuroscience 75, 523–533 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Neuhoff, H., Neu, A., Liss, B. & Roeper, J. Ih channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J. Neurosci. 22, 1290–1302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cruz, H. G. et al. Bi-directional effects of GABAB receptor agonists on the mesolimbic dopamine system. Nat. Neurosci. 7, 153–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Pandit, R. et al. Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward. Neuropsychopharmacology 41, 2241–2251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Figlewicz, D. P., Evans, S. B., Murphy, J., Hoen, M. & Baskin, D. G. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 964, 107–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Yamada, M. et al. Regulation of neurotensin receptor mRNA expression by the receptor antagonist SR 48692 in the rat midbrain dopaminergic neurons. Brain Res. Mol. Brain Res. 33, 343–346 (1995).

    Article  CAS  PubMed  Google Scholar 

  135. Korotkova, T. M., Sergeeva, O. A., Eriksson, K. S., Haas, H. L. & Brown, R. E. Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J. Neurosci. 23, 7–11 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Korotkova, T. M., Brown, R. E., Sergeeva, O. A., Ponomarenko, A. A. & Haas, H. L. Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. Eur. J. Neurosci. 23, 2677–2685 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Cork, S. C. et al. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 4, 718–731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Numan, S. & Seroogy, K. B. Expression of trkB and trkC mRNAs by adult midbrain dopamine neurons: a double-label in situ hybridization study. J. Comp. Neurol. 403, 295–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Margolis, E. B., Mitchell, J. M., Ishikawa, J., Hjelmstad, G. O. & Fields, H. L. Midbrain dopamine neurons: projection target determines action potential duration and dopamine D2 receptor inhibition. J. Neurosci. 28, 8908–8913 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Margolis, E. B., Hjelmstad, G. O., Fujita, W. & Fields, H. L. Direct bidirectional μ-opioid control of midbrain dopamine neurons. J. Neurosci. 34, 14707–14716 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Kotecki, L. et al. GIRK channels modulate opioid-induced motor activity in a cell type- and subunit-dependent manner. J. Neurosci. 35, 7131–7142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ford, C. P., Mark, G. P. & Williams, J. T. Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J. Neurosci. 26, 2788–2797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Margolis, E. B., Hjelmstad, G. O., Bonci, A. & Fields, H. L. Kappa-opioid agonists directly inhibit midbrain dopaminergic neurons. J. Neurosci. 23, 9981–9986 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Margolis, E. B. et al. Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc. Natl Acad. Sci. USA 103, 2938–2942 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank D. Root, D. Barker, C. Mejias-Aponte, H.-L. Wang and Z. Shiliang for constructive criticism of the initial manuscript. Work on this article was supported by the Intramural Research Program (IRP) of the National Institute on Drug Abuse (IRP/NIDA/NIH) to M.M. and by the National Institute on Drug Abuse Award R01 DA030529 to E.B.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisela Morales.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Incentive salience

A psychological process through which a stimulus is conferred with motivational properties that make it more attractive or 'wanted'.

Stimulus salience

The extent to which a thing or an event stands out from the rest.

Motivated behaviour

An action that is driven by internal states such as desire or hunger.

Asymmetric synapses

Synaptic contacts that are observed via electron microscopy in which the postsynaptic thickening is wider than the presynaptic one. They are thought to comprise largely excitatory connections. The thickening indicates the high density of proteins that are involved in glutamatergic neurotransmission and plasticity.

Axonal microdomains

Compartments along the axon with dimensions on the order of microns that share similar properties (such as specific vesicles or biochemical markers). In this article, we use this term specifically to refer to microdomains within terminal regions.

Medium spiny neurons

(MSNs). Principal projection neurons of the nucleus accumbens and dorsal striatum. These neurons release GABA and comprise >95% of the neurons in these regions.

Proteasomal degradation

Enzymatic breakdown of proteins by protein complexes (proteasomes) in which the small protein ubiquitin is conjugated to proteins that are destined for degradation.

Volume transmission

A form of neurotransmission in which a neurotransmitter or modulator is released into the extrasynaptic space such that it diffuses away from the release site to activate receptors with broader distribution beyond a single synapse.

Conditioned placed preference

A Pavlovian behavioural paradigm during which a subject learns to associate a particular manipulation, such as a drug administration or optogenetic stimulation, with a specific physical environment (a second environment is associated with a control manipulation). On a subsequent testing day in which no manipulation is administered, the subject can freely move between the two training environments: when a subject chooses to spend more time in the environment that is paired with the active manipulation, the interpretation is that the subject found the manipulation 'rewarding'.

Conditioned place aversion

When the same behavioural conditioning as in conditioned place preference results in the subject avoiding the environment that is associated with the active manipulation, it is interpreted as an 'aversive' manipulation.

Optical intracranial self-stimulation

A behavioural paradigm in which animals work (for example, press a lever or roll a cylinder with their paws) to deliver light to a brain region where a light sensitive channel, such as channelrhodopsin 2, is present.

Instrumental behaviour

A behavioural paradigm in which a particular behavioural response is associated with an outcome. It is goal directed insofar as the action increases the likelihood of obtaining rewards or avoiding punishments. Instrumental behaviour is distinguished from Pavlovian (classical) conditioning, in which stimulus and outcome are associated but no response action is required.

Perseverative behaviour

An inability to update or alter a behavioural strategy when the rule (or rules) of the current task has changed, leading to suboptimal performance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, M., Margolis, E. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 18, 73–85 (2017). https://doi.org/10.1038/nrn.2016.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2016.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing