Abstract
We propose a conceptual model that describes the operation of the main thalamocortical loop of the rat somatosensory system. According to this model, the asynchronous convergence of ascending and descending projections dynamically alters the physiological properties of thalamic neurons in the ventral posterior medial (VPM) nucleus as rats shift between three behavioral states. Two of these states are characterized by distinct modes of rhythmic whisker movements. We posit that these simultaneous shifts in exploratory behavioral strategy and in the physiological properties of VPM neurons allow rats to either (i) optimize the detection of stimuli that are novel or difficult to sense or (ii) process complex patterns of multi-whisker stimulation.
* NOTE: The title of this article contained a typographical error. It originally read: "Thalamcortical optimization of tactile processing according to behavioral state." However the correct title is: Thalamocortical optimization of tactile processing according to behavioral state.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Thalamocortical loops as temporal demodulators across senses
Communications Biology Open Access 26 May 2023
-
Frequency-specific coupling in fronto-parieto-occipital cortical circuits underlie active tactile discrimination
Scientific Reports Open Access 25 March 2019
-
Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales
Scientific Reports Open Access 12 January 2018
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Change history
11 June 2002
Fixed typo in title and added linked asterisk
References
Rice, F. in The Barrel Cortex of Rodents (eds. Jones, E. & Diamond, I.) 1–75 (Plenum, New York, 1995).
Woolsey, T.A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).
Chapin, J.K. & Woodward, D.J. Modulation of sensory responsiveness of single somatosensory cortical cells during movement and arousal behaviors. Exp. Neurol. 72, 164–178 (1981).
Simons, D.J. Temporal and spatial integration in the rat SI vibrissa cortex. J. Neurophysiol. 54, 615–635 (1985).
Nicolelis, M.A.L. & Chapin, J.K. The spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus. J. Neurosci. 14, 3511–3532 (1994).
Connors, B.W. & Gutnick, M.J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).
Silva, L.R., Amitai, Y. & Connors, B.W. Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251, 432–435 (1991).
Ghazanfar, A.A. & Nicolelis, M.A.L. Spatiotemporal properties of layer V neurons in the rat primary somatosensory cortex. Cereb. Cortex 9, 348–361 (1999).
Ahissar, E., Haidarliu, S. & Zacksenhouse, M. Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators. Proc. Natl. Acad. Sci. USA 94, 11633–11638 (1997).
Fee, M.S., Mitra, P.P. & Kleinfeld, D. Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J. Neurophysiol. 78, 1144–1149 (1997).
Simons, D.J. & Carvell, G.E. Thalamocortical response transformation in the rat vibrissa/barrel system. J. Neurophysiol. 61, 311–330 (1989).
Ghazanfar, A.A., Stambaugh, C.R. & Nicolelis, M.A.L. Encoding of tactile stimulus location by somatosensory thalamocortical ensembles. J. Neurosci. 20, 3761–3775 (2000).
Nicolelis, M.A.L., Lin, R.C.S., Woodward, D.J. & Chapin, J.K. Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information. Nature 361, 533–536 (1993).
Polley, D.B., Chen-Bee, C.H. & Frostig, R.D. Two directions of plasticity in the sensory-deprived adult cortex. Neuron 24, 623–637 (1999).
Castro-Alamancos, M.A., Donoghue, J.P. & Connors, B.W. Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J. Neurosci. 15, 5324–5333 (1995).
Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).
Petersen, C.C. & Sakmann, B. The excitatory neuronal network of rat layer 4 barrel cortex. J. Neurosci. 20, 7579–7586 (2000).
Nicolelis, M.A.L. et al. Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron 18, 529–537 (1997).
Markram, H. A network of tufted layer 5 pyramidal neurons. Cereb. Cortex 7, 523–533 (1997).
Markram, H., Helm, P.J. & Sakmann, B. Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol. 485, 1–20 (1995).
Polley, D.B., Chen-Bee, C.H. & Frostig, R.D. Varying the degree of single-whisker stimulation differentially affects phases of intrinsic signals in rat barrel cortex. J. Neurophysiol. 81, 692–701 (1999).
Masino, S.A. & Frostig, R.D. Quantitative long-term imaging of the functional representation of a whisker in rat barrel cortex. Proc. Natl. Acad. Sci. USA 93, 4942–4947 (1996).
Sheth, B.R., Moore, C.I. & Sur, M. Temporal modulation of spatial borders in rat barrel cortex. J. Neurophysiol. 79, 464–470 (1998).
Kleinfeld, D. & Delaney, K.R. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes [published erratum appears in J. Comp. Neurol. 378, 594 (1997)]. J. Comp. Neurol. 375, 89–108 (1996).
Fanselow, E.E. & Nicolelis, M.A.L. Behavioral modulation of tactile responses in the rat somatosensory system. J. Neurosci. 19, 7603–7616 (1999).
Hallanger, A.E. et al. The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J. Comp. Neurol. 262, 105–124 (1987).
Plummer, K.L. et al. Muscarinic receptor subtypes in the lateral geniculate nucleus: a light and electron microscopic analysis. J. Comp. Neurol. 404, 408–425 (1999).
Zhu, J.J. & Uhlrich, D.J. Cellular mechanisms underlying two muscarinic receptor-mediated depolarizing responses in relay cells of the rat lateral geniculate nucleus. Neuroscience 87, 767–781 (1998).
Carden, W.B. & Bickford, M.E. Location of muscarinic type 2 receptors within the synaptic circuitry of the cat visual thalamus. J. Comp. Neurol. 410, 431–443 (1999).
McCormick, D.A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39, 337–388 (1992).
Poggio, G. & Mountcastle, V. The functional properties of ventrobasal neurons studied in unanesthetized monkeys. J. Neurophysiol. 26, 775–806 (1963).
Andersen, P., McBrooks, C., Eccles, H. & Sears, T. The ventrobasal nucleus of the thalamus: potential fields, synaptic transmission and excitability of both presynaptic and post-synaptic components. J. Physiol. 174, 348–369 (1964).
Andersen, P., Eccles, J. & Sears, T. The ventro-basal complex of the thalamus: types of cells, their responses and their functional organization. J. Physiol. 174, 370–399 (1964).
Maffei, L., Moruzzi, G. & Rizzolatti, G. Influence of sleep and wakefulness on the response of lateral geniculate units to sinewave photic stimulation. Arch. Ital. Biol. 103, 596–608 (1965).
McCarley, R.W., Benoit, O. & Barrionuevo, G. Lateral geniculate nucleus unitary discharge in sleep and waking: state- and rate-specific aspects. J. Neurophysiol. 50, 798–818 (1983).
Deschenes, M., Paradis, M., Roy, J.P. & Steriade, M. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J. Neurophysiol. 51, 1196–1219 (1984).
Sherman, S.M. Dual response modes in lateral geniculate neurons: mechanisms and functions. Vis. Neurosci. 13, 205–213 (1996).
Steriade, M. & McCarley, R. Brainstem Control of Wakefulness and Sleep (Plenum, New York, 1990).
Fourment, A., Hirsch, J.C. & Marc, M.E. Oscillations of the spontaneous slow-wave sleep rhythm in lateral geniculate nucleus relay neurons of behaving cats. Neuroscience 14, 1061–1075 (1985).
Steriade, M., McCormick, D.A. & Sejnowski, T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).
Steriade, M. & Llinas, R.R. The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 68, 649–742 (1988).
Maffei, L. & Rizzolatti, G. Effect of synchronized sleep on the response of lateral geniculate units to flashes of light. Arch. Ital. Biol. 103, 609–622 (1965).
Coenen, A.M. & Vendrik, A.J. Determination of the transfer ratio of cat's geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Exp. Brain Res. 14, 227–242 (1972).
Livingstone, M. & Hubel, D. Effects of sleep and arousal on the processing of visual information in the cat. Nature 291, 554–561 (1981).
Weyand, T.G., Boudreaux, M. & Guido, W. Burst and tonic response modes in thalamic neurons during sleep and wakefulness. J. Neurophysiol. 85, 1107–1118 (2001).
Reinagel, P., Godwin, D., Sherman, S.M. & Koch, C. Encoding of visual information by LGN bursts. J. Neurophysiol. 81, 2558–2569 (1999).
Guido, W. & Weyand, T. Burst responses in thalamic relay cells of the awake behaving cat. J. Neurophysiol. 74, 1782–1786 (1995).
Edeline, J.M., Manunta, Y. & Hennevin, E. Auditory thalamus neurons during sleep: changes in frequency selectivity, threshold and receptive field size. J. Neurophysiol. 84, 934–952 (2000).
Swadlow, H.A. & Gusev, A.G. The impact of 'bursting' thalamic impulses at a neocortical synapse. Nat. Neurosci. 4, 402–408 (2001).
Ramcharan, E.J. et al. Cellular mechanisms underlying activity patterns in the monkey thalamus during visual behavior. J. Neurophysiol. 84, 1982–1987 (2000).
Ramcharan, E.J., Gnadt, J.W. & Sherman, S.M. Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis. Neurosci. 17, 55–62 (2000).
Fanselow, E.F., Sameshima, K., Baccala, L.A. & Nicolelis, M.A.L. Thalamic bursting in rats during different awake behavioral states. Proc. Natl. Acad. Sci. USA 98, 15330–15335 (2001).
Steriade, M., Jones, E. & Llinas, R. Thalamic Oscillations and Signaling (Wiley, New York, 1990).
McCormick, D.A. & Feeser, H.R. Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience 39, 103–113 (1990).
Sherman, S.M. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24, 122–126 (2001).
Jahnsen, H. & Llinas, R. Electrophysiological properties of guinea-pig thalamic neurons: an in vitro study. J. Physiol. 349, 205–226 (1984).
Llinas, R. & Jahnsen, H. Electrophysiology of mammalian thalamic neurons in vitro. Nature 297, 406–408 (1982).
Jahnsen, H. & Llinas, R. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J. Physiol. 349, 227–247 (1984).
Deschenes, M., Roy, J.P. & Steriade, M. Thalamic bursting mechanism: an inward slow current revealed by membrane hyperpolarization. Brain Res. 239, 289–293 (1982).
Crunelli, V., Lightowler, S. & Pollard, C.E. A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. J. Physiol. 413, 543–561 (1989).
McCormick, D.A. Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus. J. Neurosci. 12, 278–289 (1992).
Sillito, A.M., Kemp, J.A. & Berardi, N. The cholinergic influence on the function of the cat dorsal lateral geniculate nucleus (dLGN). Brain Res. 280, 299–307 (1983).
Steriade, M. & Deschenes, M. in Cellular Thalamic Mechanisms (eds. Bentivoglio, M. & Spreafico, R.) 51–76 (Elsevier, Amsterdam, 1988).
Nicolelis, M.A.L., Baccala, L.A., Lin, R.C. & Chapin, J.K. Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268, 1353–1358 (1995).
Semba, K., Szechtman, H. & Komisaruk, B.R. Synchrony among rhythmical facial tremor, neocortical 'alpha' waves and thalamic non-sensory neuronal bursts in intact awake rats. Brain Res. 195, 281–298 (1980).
Semba, K. & Komisaruk, B.R. Neural substrates of two different rhythmical vibrissal movements in the rat. Neuroscience 12, 761–774 (1984).
Carvell, G.E. & Simons, D.J. Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10, 2638–2648 (1990).
Welker, W.I. Analysis of sniffing of the albino rat. Behavior 22, 223–244 (1964).
Gastout, H. Etude électrocorticographique de la réactivite des rythmes rolandiques. Rev. Neurol. 87, 176–182 (1952).
Chatrain, E., Petersen, M. & Lazarte, J. The blocking of the rolandic wicket rhythm and some central changes related to movement. EEG Clin. Neurophysiol. 11, 497–510 (1959).
Pfurtscheller, G. & Neuper, C. Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. Neuroreport 3, 1057–1060 (1992).
Pfurtscheller, G. & Neuper, C. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci. Lett. 174, 93–96 (1994).
Pinault, D., Vergnes, M. & Marescaux, C. Medium-voltage 5–9 Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 105, 181–201 (2001).
Carvell, G.E., Miller, S.A. & Simons, D.J. The relationship of vibrissal motor cortex unit activity to whisking in the awake rat. Somat. Motor Res. 13, 115–127 (1996).
Krupa, D.J., Ghazanfar, A.A. & Nicolelis, M.A.L. Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proc. Natl. Acad. Sci. USA 96, 8200–8205 (1999).
Ghazanfar, A.A., Krupa, D.J. & Nicolelis, M.A.L. Role of corticothalamic feedback in processing of simple and complex tactile signals. Exp. Brain Res. 141, 88–100 (2001).
Sameshima, K. & Baccala, L.A. Using partial directed coherence to describe neuronal ensemble interactions. J. Neurosci. Meth. 94, 93–103 (1999).
Baccala, L. & Sameshima, K. Parital directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463–474 (2001).
Baccala, L. & Sameshima, K. Overcoming the limitations of correlation analysis for many simultaneously processed neural structures. Prog. Brain Res. 130, 33–47 (2001).
Morison, R. & Bassett, D. Electrical activity of the thalamus and basal ganglia in decorticate cats. J. Neurophysiol. 8, 309–314 (1945).
Steriade, M., Domich, L., Oakson, G. & Deschenes, M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. J. Neurophysiol. 57, 260–273 (1987).
Contreras, D., Destexhe, A., Sejnowski, T.J. & Steriade, M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274, 771–774 (1996).
McCormick, D.A. & von Krosigk, M. Corticothalamic activation modulates thalamic firing through glutamate 'metabotropic' receptors. Proc. Natl. Acad. Sci. USA 89, 2774–2778 (1992).
Destexhe, A., Contreras, D. & Steriade, M. Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J. Neurophysiol. 79, 999–1016 (1998).
Ahissar, E. & Zacksenhouse, M. in Advances in Neural Population Coding (ed. Nicolelis, M. A. L.) 75–87 (Elsevier, Amsterdam, 2001).
Destexhe, A. Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J. Physiol. Paris 94, 391–410 (2000).
Acknowledgements
This work was supported by National Institute of Dental Research grants DE11121-01 and DE13810-01, a Human Frontier Science Program grant and a United States/Israel Bi-national Science Foundation award to M.A.L.N. and a predoctoral NRSA grant (MH-12316-01A1) to E.E.F.
Author information
Authors and Affiliations
Corresponding author
Additional information
NOTE: The title of this article contained a typographical error. It originally read: "Thalamcortical optimization of tactile processing according to behavioral state." However the correct title is: Thalamocortical optimization of tactile processing according to behavioral state.
Rights and permissions
About this article
Cite this article
Nicolelis, M., Fanselow, E. Thalamocortical optimization of tactile processing according to behavioral state. Nat Neurosci 5, 517–523 (2002). https://doi.org/10.1038/nn0602-517
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nn0602-517
This article is cited by
-
Thalamocortical loops as temporal demodulators across senses
Communications Biology (2023)
-
Peak Alpha Frequency and Thalamic Structure in Children with Typical Development and Autism Spectrum Disorder
Journal of Autism and Developmental Disorders (2022)
-
Frequency-specific coupling in fronto-parieto-occipital cortical circuits underlie active tactile discrimination
Scientific Reports (2019)
-
Anti-correlated cortical networks arise from spontaneous neuronal dynamics at slow timescales
Scientific Reports (2018)
-
Characteristics of the Structural Organization of the Ventral Posteromedial and Posterolateral Nuclei and the Reticular Nucleus of the Thalamus in Rats (an immunohistochemical study)
Neuroscience and Behavioral Physiology (2017)