Thalamocortical optimization of tactile processing according to behavioral state | Nature Neuroscience
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Thalamocortical optimization of tactile processing according to behavioral state

An Erratum to this article was published on 01 July 2002

This article has been updated

Abstract

We propose a conceptual model that describes the operation of the main thalamocortical loop of the rat somatosensory system. According to this model, the asynchronous convergence of ascending and descending projections dynamically alters the physiological properties of thalamic neurons in the ventral posterior medial (VPM) nucleus as rats shift between three behavioral states. Two of these states are characterized by distinct modes of rhythmic whisker movements. We posit that these simultaneous shifts in exploratory behavioral strategy and in the physiological properties of VPM neurons allow rats to either (i) optimize the detection of stimuli that are novel or difficult to sense or (ii) process complex patterns of multi-whisker stimulation.

* NOTE: The title of this article contained a typographical error. It originally read: "Thalamcortical optimization of tactile processing according to behavioral state." However the correct title is: Thalamocortical optimization of tactile processing according to behavioral state.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the main rat thalamocortical loop.
Figure 2: Burst activity in VPM cells and period of hyper-sensitivity after a burst.
Figure 3: Neural activity in VPM thalamus during three behavioral states.
Figure 4: Schematic diagram of neuronal firing in VPM neurons during

Change history

  • 11 June 2002

    Fixed typo in title and added linked asterisk

References

  1. Rice, F. in The Barrel Cortex of Rodents (eds. Jones, E. & Diamond, I.) 1–75 (Plenum, New York, 1995).

    Google Scholar 

  2. Woolsey, T.A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex: description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    CAS  PubMed  Google Scholar 

  3. Chapin, J.K. & Woodward, D.J. Modulation of sensory responsiveness of single somatosensory cortical cells during movement and arousal behaviors. Exp. Neurol. 72, 164–178 (1981).

    CAS  PubMed  Google Scholar 

  4. Simons, D.J. Temporal and spatial integration in the rat SI vibrissa cortex. J. Neurophysiol. 54, 615–635 (1985).

    CAS  PubMed  Google Scholar 

  5. Nicolelis, M.A.L. & Chapin, J.K. The spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus. J. Neurosci. 14, 3511–3532 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Connors, B.W. & Gutnick, M.J. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104 (1990).

    CAS  PubMed  Google Scholar 

  7. Silva, L.R., Amitai, Y. & Connors, B.W. Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251, 432–435 (1991).

    CAS  PubMed  Google Scholar 

  8. Ghazanfar, A.A. & Nicolelis, M.A.L. Spatiotemporal properties of layer V neurons in the rat primary somatosensory cortex. Cereb. Cortex 9, 348–361 (1999).

    CAS  PubMed  Google Scholar 

  9. Ahissar, E., Haidarliu, S. & Zacksenhouse, M. Decoding temporally encoded sensory input by cortical oscillations and thalamic phase comparators. Proc. Natl. Acad. Sci. USA 94, 11633–11638 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fee, M.S., Mitra, P.P. & Kleinfeld, D. Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J. Neurophysiol. 78, 1144–1149 (1997).

    CAS  PubMed  Google Scholar 

  11. Simons, D.J. & Carvell, G.E. Thalamocortical response transformation in the rat vibrissa/barrel system. J. Neurophysiol. 61, 311–330 (1989).

    CAS  PubMed  Google Scholar 

  12. Ghazanfar, A.A., Stambaugh, C.R. & Nicolelis, M.A.L. Encoding of tactile stimulus location by somatosensory thalamocortical ensembles. J. Neurosci. 20, 3761–3775 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicolelis, M.A.L., Lin, R.C.S., Woodward, D.J. & Chapin, J.K. Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information. Nature 361, 533–536 (1993).

    CAS  PubMed  Google Scholar 

  14. Polley, D.B., Chen-Bee, C.H. & Frostig, R.D. Two directions of plasticity in the sensory-deprived adult cortex. Neuron 24, 623–637 (1999).

    CAS  PubMed  Google Scholar 

  15. Castro-Alamancos, M.A., Donoghue, J.P. & Connors, B.W. Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. J. Neurosci. 15, 5324–5333 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, J.J. & Connors, B.W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).

    CAS  PubMed  Google Scholar 

  17. Petersen, C.C. & Sakmann, B. The excitatory neuronal network of rat layer 4 barrel cortex. J. Neurosci. 20, 7579–7586 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nicolelis, M.A.L. et al. Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron 18, 529–537 (1997).

    CAS  PubMed  Google Scholar 

  19. Markram, H. A network of tufted layer 5 pyramidal neurons. Cereb. Cortex 7, 523–533 (1997).

    CAS  PubMed  Google Scholar 

  20. Markram, H., Helm, P.J. & Sakmann, B. Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol. 485, 1–20 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Polley, D.B., Chen-Bee, C.H. & Frostig, R.D. Varying the degree of single-whisker stimulation differentially affects phases of intrinsic signals in rat barrel cortex. J. Neurophysiol. 81, 692–701 (1999).

    CAS  PubMed  Google Scholar 

  22. Masino, S.A. & Frostig, R.D. Quantitative long-term imaging of the functional representation of a whisker in rat barrel cortex. Proc. Natl. Acad. Sci. USA 93, 4942–4947 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sheth, B.R., Moore, C.I. & Sur, M. Temporal modulation of spatial borders in rat barrel cortex. J. Neurophysiol. 79, 464–470 (1998).

    CAS  PubMed  Google Scholar 

  24. Kleinfeld, D. & Delaney, K.R. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes [published erratum appears in J. Comp. Neurol. 378, 594 (1997)]. J. Comp. Neurol. 375, 89–108 (1996).

    CAS  PubMed  Google Scholar 

  25. Fanselow, E.E. & Nicolelis, M.A.L. Behavioral modulation of tactile responses in the rat somatosensory system. J. Neurosci. 19, 7603–7616 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hallanger, A.E. et al. The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J. Comp. Neurol. 262, 105–124 (1987).

    CAS  PubMed  Google Scholar 

  27. Plummer, K.L. et al. Muscarinic receptor subtypes in the lateral geniculate nucleus: a light and electron microscopic analysis. J. Comp. Neurol. 404, 408–425 (1999).

    CAS  PubMed  Google Scholar 

  28. Zhu, J.J. & Uhlrich, D.J. Cellular mechanisms underlying two muscarinic receptor-mediated depolarizing responses in relay cells of the rat lateral geniculate nucleus. Neuroscience 87, 767–781 (1998).

    CAS  PubMed  Google Scholar 

  29. Carden, W.B. & Bickford, M.E. Location of muscarinic type 2 receptors within the synaptic circuitry of the cat visual thalamus. J. Comp. Neurol. 410, 431–443 (1999).

    CAS  PubMed  Google Scholar 

  30. McCormick, D.A. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog. Neurobiol. 39, 337–388 (1992).

    CAS  PubMed  Google Scholar 

  31. Poggio, G. & Mountcastle, V. The functional properties of ventrobasal neurons studied in unanesthetized monkeys. J. Neurophysiol. 26, 775–806 (1963).

    CAS  PubMed  Google Scholar 

  32. Andersen, P., McBrooks, C., Eccles, H. & Sears, T. The ventrobasal nucleus of the thalamus: potential fields, synaptic transmission and excitability of both presynaptic and post-synaptic components. J. Physiol. 174, 348–369 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Andersen, P., Eccles, J. & Sears, T. The ventro-basal complex of the thalamus: types of cells, their responses and their functional organization. J. Physiol. 174, 370–399 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Maffei, L., Moruzzi, G. & Rizzolatti, G. Influence of sleep and wakefulness on the response of lateral geniculate units to sinewave photic stimulation. Arch. Ital. Biol. 103, 596–608 (1965).

    CAS  PubMed  Google Scholar 

  35. McCarley, R.W., Benoit, O. & Barrionuevo, G. Lateral geniculate nucleus unitary discharge in sleep and waking: state- and rate-specific aspects. J. Neurophysiol. 50, 798–818 (1983).

    CAS  PubMed  Google Scholar 

  36. Deschenes, M., Paradis, M., Roy, J.P. & Steriade, M. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J. Neurophysiol. 51, 1196–1219 (1984).

    CAS  PubMed  Google Scholar 

  37. Sherman, S.M. Dual response modes in lateral geniculate neurons: mechanisms and functions. Vis. Neurosci. 13, 205–213 (1996).

    CAS  PubMed  Google Scholar 

  38. Steriade, M. & McCarley, R. Brainstem Control of Wakefulness and Sleep (Plenum, New York, 1990).

  39. Fourment, A., Hirsch, J.C. & Marc, M.E. Oscillations of the spontaneous slow-wave sleep rhythm in lateral geniculate nucleus relay neurons of behaving cats. Neuroscience 14, 1061–1075 (1985).

    CAS  PubMed  Google Scholar 

  40. Steriade, M., McCormick, D.A. & Sejnowski, T.J. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993).

    CAS  PubMed  Google Scholar 

  41. Steriade, M. & Llinas, R.R. The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 68, 649–742 (1988).

    CAS  PubMed  Google Scholar 

  42. Maffei, L. & Rizzolatti, G. Effect of synchronized sleep on the response of lateral geniculate units to flashes of light. Arch. Ital. Biol. 103, 609–622 (1965).

    CAS  PubMed  Google Scholar 

  43. Coenen, A.M. & Vendrik, A.J. Determination of the transfer ratio of cat's geniculate neurons through quasi-intracellular recordings and the relation with the level of alertness. Exp. Brain Res. 14, 227–242 (1972).

    CAS  PubMed  Google Scholar 

  44. Livingstone, M. & Hubel, D. Effects of sleep and arousal on the processing of visual information in the cat. Nature 291, 554–561 (1981).

    CAS  PubMed  Google Scholar 

  45. Weyand, T.G., Boudreaux, M. & Guido, W. Burst and tonic response modes in thalamic neurons during sleep and wakefulness. J. Neurophysiol. 85, 1107–1118 (2001).

    CAS  PubMed  Google Scholar 

  46. Reinagel, P., Godwin, D., Sherman, S.M. & Koch, C. Encoding of visual information by LGN bursts. J. Neurophysiol. 81, 2558–2569 (1999).

    CAS  PubMed  Google Scholar 

  47. Guido, W. & Weyand, T. Burst responses in thalamic relay cells of the awake behaving cat. J. Neurophysiol. 74, 1782–1786 (1995).

    CAS  PubMed  Google Scholar 

  48. Edeline, J.M., Manunta, Y. & Hennevin, E. Auditory thalamus neurons during sleep: changes in frequency selectivity, threshold and receptive field size. J. Neurophysiol. 84, 934–952 (2000).

    CAS  PubMed  Google Scholar 

  49. Swadlow, H.A. & Gusev, A.G. The impact of 'bursting' thalamic impulses at a neocortical synapse. Nat. Neurosci. 4, 402–408 (2001).

    CAS  PubMed  Google Scholar 

  50. Ramcharan, E.J. et al. Cellular mechanisms underlying activity patterns in the monkey thalamus during visual behavior. J. Neurophysiol. 84, 1982–1987 (2000).

    CAS  PubMed  Google Scholar 

  51. Ramcharan, E.J., Gnadt, J.W. & Sherman, S.M. Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis. Neurosci. 17, 55–62 (2000).

    CAS  PubMed  Google Scholar 

  52. Fanselow, E.F., Sameshima, K., Baccala, L.A. & Nicolelis, M.A.L. Thalamic bursting in rats during different awake behavioral states. Proc. Natl. Acad. Sci. USA 98, 15330–15335 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Steriade, M., Jones, E. & Llinas, R. Thalamic Oscillations and Signaling (Wiley, New York, 1990).

  54. McCormick, D.A. & Feeser, H.R. Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience 39, 103–113 (1990).

    CAS  PubMed  Google Scholar 

  55. Sherman, S.M. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24, 122–126 (2001).

    CAS  PubMed  Google Scholar 

  56. Jahnsen, H. & Llinas, R. Electrophysiological properties of guinea-pig thalamic neurons: an in vitro study. J. Physiol. 349, 205–226 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Llinas, R. & Jahnsen, H. Electrophysiology of mammalian thalamic neurons in vitro. Nature 297, 406–408 (1982).

    CAS  PubMed  Google Scholar 

  58. Jahnsen, H. & Llinas, R. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J. Physiol. 349, 227–247 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Deschenes, M., Roy, J.P. & Steriade, M. Thalamic bursting mechanism: an inward slow current revealed by membrane hyperpolarization. Brain Res. 239, 289–293 (1982).

    CAS  PubMed  Google Scholar 

  60. Crunelli, V., Lightowler, S. & Pollard, C.E. A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. J. Physiol. 413, 543–561 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. McCormick, D.A. Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus. J. Neurosci. 12, 278–289 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sillito, A.M., Kemp, J.A. & Berardi, N. The cholinergic influence on the function of the cat dorsal lateral geniculate nucleus (dLGN). Brain Res. 280, 299–307 (1983).

    CAS  PubMed  Google Scholar 

  63. Steriade, M. & Deschenes, M. in Cellular Thalamic Mechanisms (eds. Bentivoglio, M. & Spreafico, R.) 51–76 (Elsevier, Amsterdam, 1988).

    Google Scholar 

  64. Nicolelis, M.A.L., Baccala, L.A., Lin, R.C. & Chapin, J.K. Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268, 1353–1358 (1995).

    CAS  PubMed  Google Scholar 

  65. Semba, K., Szechtman, H. & Komisaruk, B.R. Synchrony among rhythmical facial tremor, neocortical 'alpha' waves and thalamic non-sensory neuronal bursts in intact awake rats. Brain Res. 195, 281–298 (1980).

    CAS  PubMed  Google Scholar 

  66. Semba, K. & Komisaruk, B.R. Neural substrates of two different rhythmical vibrissal movements in the rat. Neuroscience 12, 761–774 (1984).

    CAS  PubMed  Google Scholar 

  67. Carvell, G.E. & Simons, D.J. Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10, 2638–2648 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Welker, W.I. Analysis of sniffing of the albino rat. Behavior 22, 223–244 (1964).

    Google Scholar 

  69. Gastout, H. Etude électrocorticographique de la réactivite des rythmes rolandiques. Rev. Neurol. 87, 176–182 (1952).

    Google Scholar 

  70. Chatrain, E., Petersen, M. & Lazarte, J. The blocking of the rolandic wicket rhythm and some central changes related to movement. EEG Clin. Neurophysiol. 11, 497–510 (1959).

    Google Scholar 

  71. Pfurtscheller, G. & Neuper, C. Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. Neuroreport 3, 1057–1060 (1992).

    CAS  PubMed  Google Scholar 

  72. Pfurtscheller, G. & Neuper, C. Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neurosci. Lett. 174, 93–96 (1994).

    CAS  PubMed  Google Scholar 

  73. Pinault, D., Vergnes, M. & Marescaux, C. Medium-voltage 5–9 Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 105, 181–201 (2001).

    CAS  PubMed  Google Scholar 

  74. Carvell, G.E., Miller, S.A. & Simons, D.J. The relationship of vibrissal motor cortex unit activity to whisking in the awake rat. Somat. Motor Res. 13, 115–127 (1996).

    CAS  Google Scholar 

  75. Krupa, D.J., Ghazanfar, A.A. & Nicolelis, M.A.L. Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proc. Natl. Acad. Sci. USA 96, 8200–8205 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ghazanfar, A.A., Krupa, D.J. & Nicolelis, M.A.L. Role of corticothalamic feedback in processing of simple and complex tactile signals. Exp. Brain Res. 141, 88–100 (2001).

    CAS  PubMed  Google Scholar 

  77. Sameshima, K. & Baccala, L.A. Using partial directed coherence to describe neuronal ensemble interactions. J. Neurosci. Meth. 94, 93–103 (1999).

    CAS  Google Scholar 

  78. Baccala, L. & Sameshima, K. Parital directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463–474 (2001).

    CAS  PubMed  Google Scholar 

  79. Baccala, L. & Sameshima, K. Overcoming the limitations of correlation analysis for many simultaneously processed neural structures. Prog. Brain Res. 130, 33–47 (2001).

    CAS  PubMed  Google Scholar 

  80. Morison, R. & Bassett, D. Electrical activity of the thalamus and basal ganglia in decorticate cats. J. Neurophysiol. 8, 309–314 (1945).

    Google Scholar 

  81. Steriade, M., Domich, L., Oakson, G. & Deschenes, M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. J. Neurophysiol. 57, 260–273 (1987).

    CAS  PubMed  Google Scholar 

  82. Contreras, D., Destexhe, A., Sejnowski, T.J. & Steriade, M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274, 771–774 (1996).

    CAS  PubMed  Google Scholar 

  83. McCormick, D.A. & von Krosigk, M. Corticothalamic activation modulates thalamic firing through glutamate 'metabotropic' receptors. Proc. Natl. Acad. Sci. USA 89, 2774–2778 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Destexhe, A., Contreras, D. & Steriade, M. Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. J. Neurophysiol. 79, 999–1016 (1998).

    CAS  PubMed  Google Scholar 

  85. Ahissar, E. & Zacksenhouse, M. in Advances in Neural Population Coding (ed. Nicolelis, M. A. L.) 75–87 (Elsevier, Amsterdam, 2001).

    Google Scholar 

  86. Destexhe, A. Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. J. Physiol. Paris 94, 391–410 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Dental Research grants DE11121-01 and DE13810-01, a Human Frontier Science Program grant and a United States/Israel Bi-national Science Foundation award to M.A.L.N. and a predoctoral NRSA grant (MH-12316-01A1) to E.E.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A.L. Nicolelis.

Additional information

NOTE: The title of this article contained a typographical error. It originally read: "Thalamcortical optimization of tactile processing according to behavioral state." However the correct title is: Thalamocortical optimization of tactile processing according to behavioral state.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolelis, M., Fanselow, E. Thalamocortical optimization of tactile processing according to behavioral state. Nat Neurosci 5, 517–523 (2002). https://doi.org/10.1038/nn0602-517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn0602-517

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing