Attention-dependent reductions in burstiness and action-potential height in macaque area V4 | Nature Neuroscience
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attention-dependent reductions in burstiness and action-potential height in macaque area V4

Subjects

This article has been updated

Abstract

Attention improves the encoding of visual stimuli. One mechanism that is implicated in facilitating sensory encoding is the firing of action potentials in bursts. We tested the hypothesis that when spatial attention is directed to a stimulus, this causes an increase in burst firing to the attended stimulus. To the contrary, we found an attention-dependent reduction in 'burstiness' among putative pyramidal neurons in macaque area V4. We accounted for this using a conductance-based Hodgkin-Huxley style model in which attentional modulation stems from scaling excitation and inhibition. The model exhibited attention-dependent increases in firing rate and made the surprising and correct prediction that when attention is directed into a neuron's receptive field, this reduces action-potential height. The model thus provided a unified explanation for three distinct forms of attentional modulation, two of them previously undescribed, and implicates scaling of the responses of excitatory and inhibitory input populations in mediating attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Attention-dependent reduction in the burstiness.
Figure 2: Scaled conductance model of attention.
Figure 3: Narrow-spiking neurons show less spike history–dependent height adaptation than do broad-spiking neurons.
Figure 4: Attention-dependent reduction in action-potential height.

Similar content being viewed by others

Change history

  • 17 July 2013

    In the version of this article initially published online, burstiness was defined on p. 1 as the prosperity of neurons to fire rather than the propensity, and model neuron firing rates were given on p. 3 in nHz rather than Hz. The errors have been corrected for the print, PDF and HTML versions of this article.

References

  1. Krahe, R. & Gabbiani, F. Burst firing in sensory systems. Nat. Rev. Neurosci. 5, 13–23 (2004).

    Article  CAS  Google Scholar 

  2. Sherman, S.M. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24, 122–126 (2001).

    Article  CAS  Google Scholar 

  3. Cattaneo, A., Maffei, L. & Morrone, C. Patterns in the discharge of simple and complex visual cortical cells. Proc. R. Soc. Lond. B Biol. Sci. 212, 279–297 (1981).

    Article  CAS  Google Scholar 

  4. Samonds, J.M. & Bonds, A.B. From another angle: differences in cortical coding between fine and coarse discrimination of orientation. J. Neurophysiol. 91, 1193–1202 (2004).

    Article  Google Scholar 

  5. Shih, J.Y., Atencio, C.A. & Schreiner, C.E. Improved stimulus representation by short interspike intervals in primary auditory cortex. J. Neurophysiol. 105, 1908–1917 (2011).

    Article  Google Scholar 

  6. Reich, D.S., Mechler, F., Purpura, K.P. & Victor, J.D. Interspike intervals, receptive fields, and information encoding in primary visual cortex. J. Neurosci. 20, 1964–1974 (2000).

    Article  CAS  Google Scholar 

  7. Izhikevich, E.M., Desai, N.S., Walcott, E.C. & Hoppensteadt, F.C. Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci. 26, 161–167 (2003).

    Article  CAS  Google Scholar 

  8. Caporale, N. & Dan, Y. Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008).

    Article  CAS  Google Scholar 

  9. Sjöström, P.J., Rancz, E.A., Roth, A. & Häusser, M. Dendritic excitability and synaptic plasticity. Physiol. Rev. 88, 769–840 (2008).

    Article  Google Scholar 

  10. De Weerd, P., Peralta, M.R. III, Desimone, R. & Ungerleider, L.G. Loss of attentional stimulus selection after extrastriate cortical lesions in macaques. Nat. Neurosci. 2, 753–758 (1999).

    Article  CAS  Google Scholar 

  11. Reynolds, J.H. & Heeger, D.J. The normalization model of attention. Neuron 61, 168–185 (2009).

    Article  CAS  Google Scholar 

  12. Mitchell, J.F., Sundberg, K.A. & Reynolds, J.H. Differential attention-dependent response modulation across cell classes in macaque visual area V4. Neuron 55, 131–141 (2007).

    Article  CAS  Google Scholar 

  13. Brumberg, J.C., Nowak, L.G. & McCormick, D.A. Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. J. Neurosci. 20, 4829–4843 (2000).

    Article  CAS  Google Scholar 

  14. Nowak, L.G., Azouz, R., Sanchez-Vives, M.V., Gray, C.M. & McCormick, D.A. Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. J. Neurophysiol. 89, 1541–1566 (2003).

    Article  Google Scholar 

  15. Vigneswaran, G., Kraskov, A. & Lemon, R.N. Large identified pyramidal cells in macaque motor and premotor cortex exhibit “thin spikes”: implications for cell type classification. J. Neurosci. 31, 14235–14242 (2011).

    Article  CAS  Google Scholar 

  16. Anderson, E.B., Mitchell, J.F. & Reynolds, J.H. Attentional modulation of firing rate varies with burstiness across putative pyramidal neurons in macaque visual Area V4. J. Neurosci. 31, 10983–10992 (2011).

    Article  CAS  Google Scholar 

  17. Mitchell, J.F., Sundberg, K.A. & Reynolds, J.H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63, 879–888 (2009).

    Article  CAS  Google Scholar 

  18. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).

    Article  CAS  Google Scholar 

  19. Smith, M.A. & Kohn, A. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neurosci. 28, 12591–12603 (2008).

    Article  CAS  Google Scholar 

  20. Wang, Z. & McCormick, D.A. Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R-ACPD. J. Neurosci. 13, 2199–2216 (1993).

    Article  CAS  Google Scholar 

  21. Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001).

    Article  CAS  Google Scholar 

  22. Golomb, D., Cuiyong, Y. & Yaari, Y. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J. Neurophysiol. 96, 1912–1926 (2006).

    Article  CAS  Google Scholar 

  23. Destexhe, A., Rudolph, M., Fellous, J.M. & Sejnowski, T.J. Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107, 13–24 (2001).

    Article  CAS  Google Scholar 

  24. Reynolds, J.H., Chelazzi, L. & Desimone, R. Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999).

    Article  CAS  Google Scholar 

  25. Yue, C. & Yaari, Y. KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J. Neurosci. 24, 4614–4624 (2004).

    Article  CAS  Google Scholar 

  26. Colbert, C.M., Magee, J.C., Hoffman, D.A. & Johnston, D. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons. J. Neurosci. 17, 6512–6521 (1997).

    Article  CAS  Google Scholar 

  27. Jung, H.-Y., Mickus, T. & Spruston, N. Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. J. Neurosci. 17, 6639–6646 (1997).

    Article  CAS  Google Scholar 

  28. Martina, M. & Jonas, P. Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus. J. Physiol. (Lond.) 505, 593–603 (1997).

    Article  CAS  Google Scholar 

  29. Bean, B.P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007).

    Article  CAS  Google Scholar 

  30. McCormick, D.A., Connors, B.W., Lighthall, J.W. & Prince, D.A. Comparative electrophysiology of pyramidal and sparsely spiny neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985).

    Article  CAS  Google Scholar 

  31. Gonzàlez-Burgos, G., Krimer, L.S., Povysheva, N.V., Barrionuevo, G. & Lewis, D.A. Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex. J. Neurophysiol. 93, 942–953 (2005).

    Article  Google Scholar 

  32. Carter, B.C. & Bean, B.P. Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast spiking neurons. Neuron 64, 898–909 (2009).

    Article  CAS  Google Scholar 

  33. de Polavieja, G.G., Harsch, A., Kleppe, I., Robinson, H.P.C. & Juusola, M. Stimulus history reliably shapes action potential waveforms of cortical neurons. J. Neurosci. 25, 5657–5665 (2005).

    Article  CAS  Google Scholar 

  34. McAdams, C.J. & Maunsell, J.H. Effects of attention on orientation tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    Article  CAS  Google Scholar 

  35. Harris, K.D. & Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 12, 509–523 (2011).

    Article  CAS  Google Scholar 

  36. Noudoost, B., Chang, M.H., Steinmetz, N.A. & Moore, T. Top-down control of visual attention. Curr. Opin. Neurobiol. 20, 183–190 (2010).

    Article  CAS  Google Scholar 

  37. Pinsky, P.F. & Rinzel, J. Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons. J. Comp. Neurosci. 1, 39–60 (1994).

    Article  CAS  Google Scholar 

  38. Mainen, Z.F. & Sejnowski, T.J. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, 363–366 (1996).

    Article  CAS  Google Scholar 

  39. Kepecs, A. & Wang, X.-J. Analysis of complex bursting in cortical pyramidal neuron models. Neurocomputing 32, 181–187 (2000).

    Article  Google Scholar 

  40. Matsumura, M., Chen, D., Sawaguchi, T., Kubota, K. & Fetz, E.E. Synaptic interactions between primate precentral cortex neurons revealed by spike-triggered averaging of intracellular membrane potentials in vivo. J. Neurosci. 16, 7757–7767 (1996).

    Article  CAS  Google Scholar 

  41. Anderson, J.S., Carandini, M. & Ferster, X. Orientation tuning of input conductance, excitation and inhibition in cat primary visual cortex. J. Neurophysiol. 84, 909–926 (2000).

    Article  CAS  Google Scholar 

  42. Gold, C., Henze, D.A., Koch, C. & Buzsáki, G. On the origin of the extracellular action potential waveform: a modeling study. J. Neurophysiol. 95, 3113–3128 (2006).

    Article  CAS  Google Scholar 

  43. Henze, D.A. et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84, 390–400 (2000).

    Article  CAS  Google Scholar 

  44. Harris, K.D. et al. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141–149 (2001).

    Article  CAS  Google Scholar 

  45. Quirk, M.C., Blum, K.E. & Wilson, M.A. Experience-dependent changes in extracellular spike amplitude may reflect regulation of dendritic action potential back-propagation in rat hippocampal pyramidal cells. J. Neurosci. 21, 240–248 (2001).

    Article  CAS  Google Scholar 

  46. Ringach, D.L., Hawken, M.J. & Shapley, R. Dynamics of orientation tuning in macaque primary visual cortex. Nature 387, 281–284 (1997).

    Article  CAS  Google Scholar 

  47. Pylyshyn, Z.W. & Storm, R.W. Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat. Vis. 3, 179–197 (1988).

    Article  CAS  Google Scholar 

  48. Cavanagh, P. & Alvarez, G.A. Tracking multiple targets with multifocal attention. Trends Cogn. Sci. 9, 349–354 (2005).

    Article  Google Scholar 

  49. Barth, P. et al. Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. J. Neurophysiol. 92, 600–608 (2004).

    Article  Google Scholar 

  50. Aracri, P. et al. Layer-specific properties of the persistent sodium current in sensorimotor cortex. J. Neurophysiol. 95, 3460–3468 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Eye Institute grant EY13802 (J.F.M. and J.H.R.) and The Gatsby Charitable Foundation (E.B.A. and J.H.R.). We thank K. Sundberg for help in data collection, and C. Williams and J. Reyes for help with animal care.

Author information

Authors and Affiliations

Authors

Contributions

E.B.A. analyzed the data and built the model. J.F.M. collected most of the physiology data and contributed to the burst-reduction analyses. E.B.A., J.F.M. and J.H.R. wrote the manuscript.

Corresponding authors

Correspondence to Emily B Anderson or John H Reynolds.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–4 (PDF 630 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, E., Mitchell, J. & Reynolds, J. Attention-dependent reductions in burstiness and action-potential height in macaque area V4. Nat Neurosci 16, 1125–1131 (2013). https://doi.org/10.1038/nn.3463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing