Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors | Nature Materials
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors

Abstract

The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a ‘nano-electronic nose’ library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the steps for transfer printing SNAP nanowires onto plastic substrates.
Figure 2: Scanning electron micrographs of the SNAP nanowires on plastic.
Figure 3: Electrical characterization of nanowire TFTs on plastic.
Figure 4: Ultrasensitive detection with nanowire-on-plastic gas sensors.
Figure 5: Characterization of a ‘nano-electronic nose’ nanowire sensor library on plastic.

Similar content being viewed by others

References

  1. Service, R. F. Inorganic electronics begin to flex their muscle. Science 312, 1593–1594 (2006).

    Article  CAS  Google Scholar 

  2. Reuss, R. H. et al. Macroelectronics: Perspectives on technology and applications. Proc. IEEE 93, 1239–1256 (2005).

    Article  CAS  Google Scholar 

  3. Xu, J. M. Plastic electronics and future trends in microelectronics. Synth. Met. 115, 1–3 (2000).

    Article  CAS  Google Scholar 

  4. Uchikoga, S. Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays. Mater. Res. Soc. Bull. 27, 881–885 (2002).

    Article  CAS  Google Scholar 

  5. Gosain, D. P., Noguchi, T. & Usui, S. High mobility thin film transistors fabricated on a plastic substrate at a processing temperature of 110C. Jpn J. Appl. Phys. 2 39, L179–L181 (2000).

    Article  CAS  Google Scholar 

  6. Lemmi, F. et al. High-performance TFTs fabricated on plastic substrates. IEEE Electron Device Lett. 25, 486–488 (2004).

    Article  CAS  Google Scholar 

  7. Gosain, D. P. Excimer laser crystallized poly-Si TFTs on plastic substrates. Proc. SPIE 4426, 394–400 (2002).

    Article  CAS  Google Scholar 

  8. Boyce, J. B. & Mei, P. in Technology and Applications of Amorphous Silicon (ed. Street, R. A.) 94–146 (Springer, New York, 2000).

    Book  Google Scholar 

  9. Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003).

    Article  CAS  Google Scholar 

  10. Friedman, R. S., McAlpine, M. C., Ricketts, D. S., Ham, D. & Lieber, C. M. Nanotechnology: High-speed integrated nanowire circuits. Nature 434, 1085 (2005).

    Article  CAS  Google Scholar 

  11. McAlpine, M. C., Friedman, R. S. & Lieber, C. M. High-performance nanowire electronics and photonics and nanoscale patterning on flexible plastic substrates. Proc. IEEE 93, 1357–1363 (2005).

    Article  CAS  Google Scholar 

  12. Snyder, E. J., Chideme, J. & Craig, G. S. W. Fluidic self-assembly of semiconductor devices: A promising new method of mass-producing flexible circuitry. Jpn J. Appl. Phys. 1 41, 4366–4369 (2002).

    Article  CAS  Google Scholar 

  13. Stauth, S. A. & Parviz, B. A. Self-assembled single-crystal silicon circuits on plastic. Proc. Natl Acad. Sci. USA 103, 13922–13927 (2006).

    Article  CAS  Google Scholar 

  14. Whang, D., Jin, S., Wu, Y. & Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003).

    Article  CAS  Google Scholar 

  15. Tao, A. et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003).

    Article  CAS  Google Scholar 

  16. Ahn, J.-H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006).

    Article  CAS  Google Scholar 

  17. Shimoda, T., Inoue, S. & Utsunomiya, S. Polysilicon TFT on plastics. Proc. SPIE 4295, 52–59 (2001).

    Article  CAS  Google Scholar 

  18. Sun, Y., Kim, S., Adesida, I. & Rogers, J. A. Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates. Appl. Phys. Lett. 87, 083501 (2005).

    Article  Google Scholar 

  19. Menard, E., Nuzzo, R. G. & Rogers, J. A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl. Phys. Lett. 86, 093507 (2005).

    Article  Google Scholar 

  20. Lee, K. J. et al. A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. Small 1, 1164–1168 (2005).

    Article  CAS  Google Scholar 

  21. Sun, Y. & Rogers, J. A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 4, 1953–1959 (2004).

    Article  CAS  Google Scholar 

  22. Melosh, N. A. et al. Ultrahigh-density nanowire lattices and circuits. Science 300, 112–115 (2003).

    Article  CAS  Google Scholar 

  23. Wang, D., Sheriff, B. A. & Heath, J. R. Silicon p-FETs from ultrahigh density nanowire arrays. Nano Lett. 6, 1096–1100 (2006).

    Article  CAS  Google Scholar 

  24. Sze, S. M. Semiconductor Devices: Physics and Technology (Wiley, New York, 1985).

    Google Scholar 

  25. Jung, G.-Y. et al. Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. Nano Lett. 6, 351–354 (2006).

    Article  CAS  Google Scholar 

  26. Bunimovich, Y. L. et al. Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. J. Am. Chem. Soc. 128, 16323–16331 (2006).

    Article  CAS  Google Scholar 

  27. Cui, Y., Zhong, Z., Wang, D., Wang, W. U. & Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003).

    Article  CAS  Google Scholar 

  28. Wolf, S. & Tauber, R. N. Silicon Processing for the VLSI Era (Lattice Press, Sunset Beach, 2000).

    Google Scholar 

  29. Javey, A. et al. Carbon nanotube field-effect transistors with integrated Ohmic contacts and high-k gate dielectrics. Nano Lett. 4, 447–450 (2004).

    Article  CAS  Google Scholar 

  30. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  CAS  Google Scholar 

  31. Urban, G. et al. Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications. Biosens. Bioelectron. 7, 733–739 (1992).

    Article  CAS  Google Scholar 

  32. Mastrototaro, J. J. et al. An electroenzymic glucose sensor fabricated on a flexible substrate. Sensors Actuators B 5, 139–144 (1991).

    Article  CAS  Google Scholar 

  33. Cattanach, K., Kulkarni, R. D., Kozlov, M. & Manohar, S. K. Flexible carbon nanotube sensors for nerve agent simulants. Nanotechnology 17, 4123–4128 (2006).

    Article  CAS  Google Scholar 

  34. Valentini, L. et al. Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl. Phys. Lett. 82, 961–963 (2003).

    Article  CAS  Google Scholar 

  35. Qi, P. et al. Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett. 3, 347–351 (2003).

    Article  CAS  Google Scholar 

  36. Zhang, D. et al. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1924 (2004).

    Article  CAS  Google Scholar 

  37. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  CAS  Google Scholar 

  38. Li, C. et al. Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. J. Am. Chem. Soc. 127, 12484–12485 (2005).

    Article  CAS  Google Scholar 

  39. Schwartz, M. P., Alvarez, S. D. & Sailor, M. J. Porous SiO2 interferometric biosensor for quantitative determination of protein interactions: Binding of protein A to immunoglobulins derived from different species. Anal. Chem. 79, 327–334 (2007).

    Article  CAS  Google Scholar 

  40. Star, A. et al. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl Acad. Sci. USA 103, 921–926 (2006).

    Article  CAS  Google Scholar 

  41. Belanger, K., Gent, J. F., Triche, E. W., Bracken, M. B. & Leaderer, B. P. Association of indoor nitrogen dioxide exposure with respiratory symptoms in children with asthma. Am. J. Resp. Crit. Care Med. 173, 297–303 (2006).

    Article  CAS  Google Scholar 

  42. Steffes, H., Imawan, C., Solzbacher, F. & Obermeier, E. Enhancement of NO2 sensing properties of In2O3-based thin films using an Au or Ti surface modification. Sensors Actuators B 78, 106–112 (2001).

    Article  CAS  Google Scholar 

  43. Shieh, J., Feng, H. M., Hon, M. H. & Juang, H. Y. WO3 and W–Ti–O thin-film gas sensors prepared by sol-gel dip-coating. Sensors Actuators B 86, 75–80 (2002).

    Article  CAS  Google Scholar 

  44. Beckman, R., Johnston-Halperin, E., Luo, Y., Green, J. E. & Heath, J. R. Bridging dimensions: Demultiplexing ultrahigh-density nanowire circuits. Science 310, 465–468 (2005).

    Article  CAS  Google Scholar 

  45. Howarter, J. A. & Youngblood, J. P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 22, 11142–11147 (2006).

    Article  CAS  Google Scholar 

  46. Sysoev, V. V., Button, B. K., Wepsiec, K., Dmitriev, S. & Kolmakov, A. Toward the nanoscopic “electronic nose”: Hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. Nano Lett. 6, 1584–1588 (2006).

    Article  CAS  Google Scholar 

  47. Staii, C., Johnson, A. T. Jr, Chen, M. & Gelperin, A. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 5, 1774–1778 (2005).

    Article  CAS  Google Scholar 

  48. Freund, M. S. & Lewis, N. S. A chemically diverse conducting polymer-based electronic nose. Proc. Natl Acad. Sci. USA 92, 2652–2656 (1995).

    Article  CAS  Google Scholar 

  49. Muller, R. in Sensors: A Comprehensive Survey. Vol. 1, Fundamentals and General Aspects (eds Gopel, W., Hesse, J., Zemel, J. N., Gandke, T. & Ko, W. H.) 313–330 (VCH, Weinheim, 1989).

    Google Scholar 

  50. Turner, A. P. F. & Magan, N. Innovation: Electronic noses and disease diagnostics. Nature Rev. Microbiol. 2, 161–166 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Dichtel, A. Boukai and Y. Bunimovich for useful discussions. M.C.M. thanks the Intelligence Community Postdoctoral Research Fellowship Program for financial support. J.R.H. acknowledges primary support of this work via a contract from the MITRE Corporation, and support from the National Cancer Institute (#5U54 CA119347).

Author information

Authors and Affiliations

Authors

Contributions

M.C.M. and J.R.H. conceived the experiments, M.C.M. carried out the experiments and M.C.M., H.A. and D.W. designed the experiments.

Corresponding author

Correspondence to James R. Heath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAlpine, M., Ahmad, H., Wang, D. et al. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nature Mater 6, 379–384 (2007). https://doi.org/10.1038/nmat1891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing