Sinking deltas due to human activities | Nature Geoscience
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Sinking deltas due to human activities

Abstract

Many of the world's largest deltas are densely populated and heavily farmed. Yet many of their inhabitants are becoming increasingly vulnerable to flooding and conversions of their land to open ocean. The vulnerability is a result of sediment compaction from the removal of oil, gas and water from the delta's underlying sediments, the trapping of sediment in reservoirs upstream and floodplain engineering in combination with rising global sea level. Here we present an assessment of 33 deltas chosen to represent the world's deltas. We find that in the past decade, 85% of the deltas experienced severe flooding, resulting in the temporary submergence of 260,000 km2. We conservatively estimate that the delta surface area vulnerable to flooding could increase by 50% under the current projected values for sea-level rise in the twenty-first century. This figure could increase if the capture of sediment upstream persists and continues to prevent the growth and buffering of the deltas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topography of representative deltas.
Figure 2: Examples of actual and potential delta flooding.
Figure 3: The Indus floodplain and delta (Pakistan).

Similar content being viewed by others

References

  1. Syvitski, J. P. M. & Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 57, 261–282 (2007).

    Article  Google Scholar 

  2. Woodroffe, C. D., Nicholls, R. J., Saito, Y., Chen, Z. & Goodbred, S. L. in Global Change and Integrated Coastal Management: The Asia–Pacific Region, Coastal Systems and Continental Margins Vol. 10 (ed. Harvey, N.) 277–314 (Springer, 2006).

    Book  Google Scholar 

  3. Vörösmarty, C., Syvitski, J. P. M., Day, J., Paola, C. & Serebin, A. Battling to save the world's river deltas. Bull. Atom. Sci. 65, 31–43 (2009).

    Article  Google Scholar 

  4. Nicholls, R. J. et al. in IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. & Hanson, C. E.) 315–357 (Cambridge Univ. Press, 2007).

    Google Scholar 

  5. Syvitski, J. P. M. Deltas at risk. Sustain. Sci. 3, 23–32 (2008).

    Article  Google Scholar 

  6. Nicholls, R. J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 69–86 (2004).

    Article  Google Scholar 

  7. Day, J. W. Jr et al. Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science 315, 1679–1684 (2007).

    Article  Google Scholar 

  8. Turner, R. E., Swenson, E. M., Milan, C. S. & Lee, J. M. Hurricane signals in salt marsh sediments: Inorganic sources and soil volume. Limnol. Oceanogr. 52, 1231–1238 (2007).

    Article  Google Scholar 

  9. Turner, R. E., Baustian, J. J., Swenson, E. M. & Spicer, J. S. Wetland sedimentation from hurricanes Katrina and Rita. Science 314, 449–452 (2006).

    Article  Google Scholar 

  10. Bindoff, N. L. et al. in IPCC Climate Change 2007: The Physical Science Basis. (eds Solomon, S. et al.) 385–433 (Cambridge Univ. Press, 2007).

    Google Scholar 

  11. Church, J. A. & White, N. J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 33, L01602 (2006).

    Article  Google Scholar 

  12. Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. Identifying the causes of sea-level change. Nature Geosci. 2, 471–478 (2009).

    Article  Google Scholar 

  13. Meckel, T. A., Ten Brink, U. S. & Williams, S. J. Sediment compaction rates and subsidence in deltaic plains: Numerical constraints and stratigraphic influences. Basin Res. 19, 19–31 (2007).

    Article  Google Scholar 

  14. Törnqvist, T. E. et al. Mississippi Delta subsidence primarily caused by compaction of Holocene strata. Nature Geosci. 1, 173–176 (2008).

    Article  Google Scholar 

  15. Saito, Y., Chaimanee, N., Jarupongsakul, T. & Syvitski, J. P. M. Shrinking megadeltas in Asia: Sea-level rise and sediment reduction impacts from case study of the Chao Phraya Delta. Inprint Newsletter of the IGBP/IHDP Land Ocean Interaction in the Coastal Zone 2007/2, 3–9 (2007).

    Google Scholar 

  16. Caputo, M., Pieri, L. & Unghendoli, M. Geometric investigation of the subsidence in the Po Delta. Boll. Geofis. Teor. Appl. 14, 187–207 (1970).

    Google Scholar 

  17. Jouet, G., Hutton, E. W. H., Syvitski, J. P. M., Rabineau, M. & Berné, S. Modeling the isostatic effects of sealevel fluctuations on the Gulf of Lions. Comput. Geosci. 34, 1338–1357 (2008).

    Article  Google Scholar 

  18. Ivins, E. R., Dokka, R. K. & Blom, R. G. Post-glacial sediment load and subsidence, in coastal Louisiana. Geophys. Res. Lett. 34, L16303 (2007).

    Article  Google Scholar 

  19. Milne, G. A. & Mitrovica, J. X. Searching for eustasy in deglacial sea-level histories. Quat. Sci. Rev. 27, 2292–2302 (2008).

    Article  Google Scholar 

  20. Dokka, R. K., Sella, G. F. & Dixon, D. H. Tectonic control of subsidence and southward displacement of southeast Louisiana with respect to stable North America. Geophys. Res. Lett. 33, L23308 (2006).

    Article  Google Scholar 

  21. Blum, M. D., Tomkin, J. H., Purcell, A. & Lancaster, R. R. Ups and downs of the Mississippi Delta. Geology 36, 675–678 (2008).

    Article  Google Scholar 

  22. Hutton, E. W. H. & Syvitski, J. P. M. SedFlux2.0: New advances in the seafloor evolution and stratigraphic modular modeling system. Comput. Geosci. 34, 1319–1337 (2008).

    Article  Google Scholar 

  23. Dixon, T. H. Earth scientists and public policy: Have we failed New Orleans? Eos 89, 96 (2008).

    Article  Google Scholar 

  24. Syvitski, J. P. M., Kettner, A. J., Correggiari, A. & Nelson, B. W. Distributary channels and their impact on sediment dispersal. Mar. Geol. 222–223, 75–94 (2005).

  25. Milliman, J. D. & Syvitski, J. P. M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).

    Article  Google Scholar 

  26. Syvitski, J. P. M. & Milliman, J. D. Geology, geography and humans battle for dominance over the delivery of sediment to the coastal ocean. Geology 115, 1–19 (2007).

    Article  Google Scholar 

  27. Roldolfo, K. S. & Siringan, F. P. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines. Disasters 30, 118–139 (2006).

    Article  Google Scholar 

  28. Holmes, D. A. The recent history of the Indus. Geog. J. 134, 367–382 (1968).

    Article  Google Scholar 

  29. Giosan, L. et al. Recent morphodynamics of the Indus delta shore and shelf. Cont. Shelf Res. 26, 1668–1684 (2006).

    Article  Google Scholar 

  30. Han, M., Hou, J. & Wu, L. Potential impacts of sea level rise on China's coastal environment and cities: A national assessment. J. Coastal Res. 14, 79–90 (1995).

    Google Scholar 

  31. Stanley, J. D. & Warne, A. G. Nile Delta in its destructive phase. J. Coastal Res. 14, 794–825 (1998).

    Google Scholar 

  32. Schumann, G. et al. Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS J. Photogram. Remote Sensing 63, 283–296 (2008).

    Article  Google Scholar 

  33. Giosan, L. et al. Young Danube delta documents stable Black Sea level since the middle Holocene: Morphodynamic, paleogeographic, and archaeological implications. Geology 34, 757–760 (2006).

    Article  Google Scholar 

  34. Giosan, L., Bokuniewicz, H. J., Panin, N. & Postolache, I. Longshore sediment transport pattern along the Romanian Danube delta coast. J. Coastal Res. 15, 859–871 (1999).

    Google Scholar 

  35. Goldenberg, S. B. et al. The recent increase in Atlantic hurricane activity: causes and implications. Science 293, 474–479 (2001).

    Article  Google Scholar 

  36. Holland, G. & Webster, P. Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Phil. Trans. R. Soc. A 365, 2695–2716 (2007).

    Article  Google Scholar 

  37. Lambert, F. H., Stine, A. R., Krakauer, N. Y. & Chiang, J. C. H. How much will precipitation increase with global warming? Eos 89, 193–194 (2008).

    Article  Google Scholar 

  38. Overeem, I. & Syvitski, J. P. M. Dynamics and Vulnerability of Delta Systems. LOICZ Reports & Studies No. 35. (GKSS Research Center, 2009).

    Google Scholar 

Download references

Acknowledgements

We thank the following organizations for research funding: National Science Foundation (Cooperative Agreement 0621695), NASA (NNXOTAF2SG/P207124; NNXOTAF28G/P207124) and the Office of Naval Research (N00014-04-1-0235). Many scientists have contributed to this effort, including C. Paola (NCED), S. Peckham (CSDMS), W.-S. Kim (Univ. Illinois), J. Storms (Delft Univ. Technology) and I. Kelman (CICER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. M. Syvitski.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syvitski, J., Kettner, A., Overeem, I. et al. Sinking deltas due to human activities. Nature Geosci 2, 681–686 (2009). https://doi.org/10.1038/ngeo629

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing