Sharing a quota on cumulative carbon emissions | Nature Climate Change
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sharing a quota on cumulative carbon emissions

Abstract

Any limit on future global warming is associated with a quota on cumulative global CO2 emissions. We translate this global carbon quota to regional and national scales, on a spectrum of sharing principles that extends from continuation of the present distribution of emissions to an equal per-capita distribution of cumulative emissions. A blend of these endpoints emerges as the most viable option. For a carbon quota consistent with a 2 °C warming limit (relative to pre-industrial levels), the necessary long-term mitigation rates are very challenging (typically over 5% per year), both because of strong limits on future emissions from the global carbon quota and also the likely short-term persistence in emissions growth in many regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sharing the carbon-quota pie.
Figure 2: Quotas, cumulative committed emissions and fossil-fuel reserves.
Figure 3: Dependence of the regional mitigation challenge on the sharing index (w) and the warming limit.
Figure 4: Distribution of the mitigation challenge among countries.

Similar content being viewed by others

References

  1. Allen, M. R. et al. Warming caused by cumulative carbon emissions: towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  2. Meinshausen, M. et al. Greenhouse gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  CAS  Google Scholar 

  3. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

    Article  CAS  Google Scholar 

  4. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–833 (2009).

    Article  CAS  Google Scholar 

  5. Raupach, M. R. et al. The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon–climate–human system. Tellus B 63, 145–164 (2011).

    Article  CAS  Google Scholar 

  6. Raupach, M. R. The exponential eigenmodes of the carbon–climate system, and their implications for ratios of responses to forcings. Earth Syst. Dynam. 4, 31–49 (2013).

    Article  Google Scholar 

  7. European Commission The 2 °C Target: Background on Impacts, Emission Pathways, Mitigation Options and Costs (European Commission, 2008).

  8. Collins, M. et al. in IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12, 1029–1136 (Cambridge Univ. Press, 2013).

    Google Scholar 

  9. Matthews, H. D., Solomon, S. & Pierrehumbert, R. Cumulative carbon as a policy framework for achieving climate stabilization. Phil. Trans. R. Soc. A 370, 4365–4379 (2012).

    Article  CAS  Google Scholar 

  10. Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geosci. (in the press).

  11. GEA Global Energy Assessment — Toward a Sustainable Future (Cambridge Univ. Press and International Institute for Applied Systems Analysis, 2012).

  12. BGR Energy Study 2013: Reserves, Resources and Availability of Energy Resources (Federal Institute for Geosciences and Natural Resources, 2013).

  13. Clarke, L. et al. in IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (Cambridge Univ. Press, 2014).

    Google Scholar 

  14. Stavins, R. et al. in IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 13 (Cambridge Univ. Press, 2014).

    Google Scholar 

  15. Höhne, N., den Elzen, M. G. J. & Escalante, D. Regional GHG reduction targets based on effort sharing: a comparison of studies. Clim. Policy 14, 122–147 (2014).

    Article  Google Scholar 

  16. Meyer, A. Contraction and Convergence. The Global Solution to Climate Change Schumacher Briefings 5 (Green Books, 2000).

    Google Scholar 

  17. Hohmeyer, O. & Rennings, K. Man-made Climate Change: Economic Aspects and Policy Considerations (ZEW Economic Studies, Centre for European Economic Research, 1999).

    Book  Google Scholar 

  18. Bows, A. & Anderson, K. Contraction and convergence: an assessment of the CCOptions model. Climatic Change 91, 275–290 (2008).

    Article  CAS  Google Scholar 

  19. Dellink, R. et al. Sharing the burden of financing adaptation to climate change. Glob. Environ. Change 19, 411–421 (2009).

    Article  Google Scholar 

  20. Bartsch, U. & Mu¨ller, B. Fossil Fuels in a Changing Climate — Impacts of the Kyoto Protocol and Developing Country Participation (Oxford Univ. Press, 2000).

    Google Scholar 

  21. Füssel, H-M. How inequitable is the global distribution of responsibility, capability, and vulnerability to climate change: a comprehensive indicator-based assessment. Glob. Environ. Change 20, 597–611 (2010).

    Article  Google Scholar 

  22. Ringius, L., Torvanger, A. & Underdal, A. Burden sharing and fairness principles in international climate policy. Int. Environ. Agreem. P. 2, 1–22 (2002).

    Article  Google Scholar 

  23. UNFCCC Kyoto Protocol to the United Nations Framework Convention on Climate Change (United Nations Framework Convention on Climate Change, 1997).

  24. Grasso, M. & Roberts, T. A compromise to break the climate impasse. Nature Clim. Change 4, 543–549 (2014).

    Article  CAS  Google Scholar 

  25. European Climate Foundation Taking Stock — The Emission Levels Implied by the Pledges to the Copenhagen Accord (European Climate Foundation, 2010).

  26. Den Elzen, M. G. J. et al. The Copenhagen Accord: abatement costs and carbon prices resulting from the submissions. Environ. Sci. Policy 14, 28–39 (2011).

    Article  Google Scholar 

  27. Rogelj, J. et al. Analysis of the Copenhagen Accord pledges and its global climatic impacts — a snapshot of dissonant ambitions. Environ. Res. Lett. 5, 034013 (2010).

    Article  Google Scholar 

  28. Rogelj, J. et al. Copenhagen Accord pledges are paltry. Nature 464, 1126–1128 (2010).

    Article  CAS  Google Scholar 

  29. UNEP The Emissions Gap Report 2013 (United Nations Environment Program, 2013).

  30. Hardin, G. The tragedy of the commons. Science 162, 1243–1248 (1968).

    Article  CAS  Google Scholar 

  31. Kolstad, C. et al. in IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 3 (Cambridge Univ. Press, 2014).

    Google Scholar 

  32. Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge Univ. Press, 1990).

    Book  Google Scholar 

  33. Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2003).

    Article  CAS  Google Scholar 

  34. Lejano, R. P., Araral, E. & Araral, D. Interrogating the commons: introduction to the Special Issue. Environ. Sci. Policy 36, 1–7 (2014).

    Article  Google Scholar 

  35. Pretty, J. Social capital and the collective management of resources. Science 302, 1912–1914 (2003).

    Article  CAS  Google Scholar 

  36. Myhre, G. et al. in IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 8, 659–740 (Cambridge Univ. Press, 2013).

    Google Scholar 

  37. Le Quéré, C. et al. Global carbon budget 2013. Earth Syst. Sci. Data 6, 235–263 (2014).

    Article  Google Scholar 

  38. Gasser, T. & Ciais, P. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of “emissions from land-use change”. Earth Syst. Dynam. 4, 171–186 (2013).

    Article  Google Scholar 

  39. Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nature Geosci. 2, 294–300 (2009).

    Article  CAS  Google Scholar 

  40. Berntsen, T. K. et al. Response of climate to regional emissions of ozone precursors: sensitivities and warming potentials. Tellus B 57, 283–304 (2005).

    Article  Google Scholar 

  41. Trudinger, C. M. & Enting, I. G. Comparison of formalisms for attributing responsibility for climate change: non-linearities in the Brazilian proposal approach. Climatic Change 68, 67–99 (2005).

    Article  CAS  Google Scholar 

  42. Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

    Article  CAS  Google Scholar 

  43. Davis, S. J. & Socolow, R. H. Commitment accounting of CO2 emissions. Environ. Res. Lett. 9, 084018 (2014).

    Article  Google Scholar 

  44. Davis, S. J., Peters, G. P. & Caldeira, K. The supply chain of CO2 emissions. Proc. Natl Acad. Sci. USA 108, 18554–18559 (2011).

    Article  CAS  Google Scholar 

  45. van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

  46. Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123, 353–367 (2014).

    Article  Google Scholar 

  47. Riahi, K. et al. Locked into Copenhagen pledges — implications of short-term 386 emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. http://dx.doi.org/10.1016/j.techfore.2013.09.016 (in the press).

  48. Schellnhuber, H. J., Cramer, W., Nakicenovic, N., Wigley, T. M. L. & Yohe, G. Avoiding Dangerous Climate Change (Cambridge Univ. Press, 2006).

    Google Scholar 

  49. Den Elzen, M. G. J. et al. The Brazilian Proposal and Other Options for International Burden Sharing: An Evaluation of Methodological and Policy Aspects using the FAIR Model (National Institute of Public Health and the Environment, 1999).

    Google Scholar 

  50. Den Elzen, M. G. J., Schaeffer, M. & Lucas, P. L. Differentiating future commitments on the basis of countries' relative historical responsibility for climate change: uncertainties in the 'Brazilian proposal' in the context of a policy implementation. Climatic Change 71, 277–301 (2005).

    Article  Google Scholar 

  51. Den Elzen, M. G. J., van Vuuren, D. P. & van Vliet, J. Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs. Climatic Change 99, 313–320 (2010).

    Article  Google Scholar 

  52. Stocker, T. F. The closing door of climate targets. Science 339, 280–282 (2013).

    Article  CAS  Google Scholar 

  53. Peters, G. P., Minx, J. C., Weber, C. L. & Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl Acad. Sci. USA 108, 8903–8908 (2011).

    Article  CAS  Google Scholar 

  54. Andres, R. J. et al. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9, 1845–1871 (2012).

    Article  CAS  Google Scholar 

  55. Peters, G. P. & Hertwich, E. G. CO2 embodied in international trade with implications for global climate policy. Environ. Sci. Technol. 42, 1401–1407 (2008).

    Article  CAS  Google Scholar 

  56. Hertwich, E. G. & Peters, G. P. Carbon footprint of nations: a global, trade-linked analysis. Environ. Sci. Technol. 43, 6414–6420 (2009).

    Article  CAS  Google Scholar 

  57. Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).

    Article  CAS  Google Scholar 

  58. Peters, G. P. et al. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nature Clim. Change 2, 2–4 (2011).

    Article  Google Scholar 

  59. Azar, C., Lindgren, K., Larson, E. & Mollersten, K. Carbon capture and storage from fossil fuels and biomass — costs and potential role in stabilizing the atmosphere. Climatic Change 74, 47–79 (2006).

    Article  CAS  Google Scholar 

  60. Van Vuuren, D. P. & Riahi, K. The relationship between short-term emissions and long-term concentration targets. Climatic Change 104, 793–801 (2011).

    Article  Google Scholar 

  61. Fuss, S. et al. Betting on negative emissions. Nature Clim. Change 4, 850–853 (2014).

    Article  CAS  Google Scholar 

  62. Garnaut, R. Garnaut Climate Change Review: Final Report (Cambridge Univ. Press, 2008).

    Google Scholar 

  63. Garnaut, R. The Garnaut Review 2011: Australia in the Global Response to Climate Change (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

Download references

Acknowledgements

M.R.R. and J.G.C. acknowledge support from the Australian Climate Change Science Program of the Department of Environment, Australian Government. G.P.P. and R.M.A. were supported by the Norwegian Research Council (236296). P.C. acknowledges support from the European Commission's 7th Framework Programme under Grant Agreements 603864 (HELIX) and the ERC Synergy Project P-IMBALANCE. P.F. was supported by the European Commission's 7th Framework Programme under Grant Agreements 282672 (EMBRACE) and 603864 (HELIX). F.J. was supported by the Australian Research Council (grant DP110102057). C.L.Q. was supported by the UK Natural Environment Research Council (NERC)'s International Opportunities Fund (project NE/103002X/1) and EU/FP7 project GEOCarbon (283080). The authors are grateful to C. Wilson and H. Ransan-Cooper for insightful comments. This work is a contribution to the Global Carbon Project (www.globalcarbonproject.org).

Author information

Authors and Affiliations

Authors

Contributions

M.R.R. designed the study, carried out calculations and coordinated the conception and writing of the paper. S.J.D. contributed data on committed emissions and drew figures. G.P.P. and R.M.A. contributed data on committed emissions and resources. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Michael R. Raupach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Text and figures (PDF 1199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raupach, M., Davis, S., Peters, G. et al. Sharing a quota on cumulative carbon emissions. Nature Clim Change 4, 873–879 (2014). https://doi.org/10.1038/nclimate2384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2384

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing