Abstract
Despite the importance of tropical biodiversity1, informative species distributional data are seldom available for biogeographical study or setting conservation priorities2,3. Modelling ecological niche distributions of species offers a potential soluion4,5,6,7; however, the utility of old locality data from museums, and of more recent remotely sensed satellite data, remains poorly explored, especially for rapidly changing tropical landscapes. Using 29 modern data sets of environmental land coverage and 621 chameleon occurrence localities from Madagascar (historical and recent), here we demonstrate a significant ability of our niche models in predicting species distribution. At 11 recently inventoried sites, highest predictive success (85.1%) was obtained for models based only on modern occurrence data (74.7% and 82.8% predictive success, respectively, for pre-1978 and all data combined). Notably, these models also identified three intersecting areas of over-prediction that recently yielded seven chameleon species new to science. We conclude that ecological niche modelling using recent locality records and readily available environmental coverage data provides informative biogeographical data for poorly known tropical landscapes, and offers innovative potential for the discovery of unknown distributional areas and unknown species.
This is a preview of subscription content, access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000)
Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995)
Crisci, J. V. The voice of historical biogeography. J. Biogeogr. 28, 157–168 (2001)
Stockwell, D. R. B. & Noble, I. R. Induction of sets of rules from animal distribution data: A robust and informative method of analysis. Math. Comput. Simul. 33, 385–390 (1992)
Stockwell, D. R. B. & Peters, D. P. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Info. Syst. 13, 143–158 (1999)
Peterson, A. T., Stockwell, D. R. B. & Kluza, D. A. in Predicting Species Occurrences: Issues of Accuracy and Scale (eds Scott, J. M., Heglund, P. J. & Morrison, M. L.) 617–623 (Island Press, Washington DC, 2002)
Peterson, A. T. et al. Future projections for Mexican faunas under global climate change scenarios. Nature 416, 626–629 (2002)
ANGAP. Plan de Gestion du Réseau National des Aires Protégées de Madagascar (Association National pour la Gestion des Aires Protégées, Antananarivo, Madagascar, 2001)
Green, G. M. & Sussman, R. W. Deforestion history of the eastern rain forests of Madagascar from satellite images. Science 248, 212–215 (1990)
Nelson, R. & Horning, N. AVHRR-LAC estimates of forest area in Madagascar, 1990. Int. J. Remote Sens. 14, 1463–1475 (1993)
Mayaux, P., Gond, V. & Bartholomé, E. Mapping the forest-cover of Madagascar with SPOT 4-VEGETATION data. Int. J. Remote Sens. 21, 3139–3144 (2000)
Brygoo, E. R. Reptiles Sauriens Chamaeleontidae. Genre Chamaeleo. Faune Madagascar 33, 1–318 (1971)
Brygoo, E. R. Reptiles Sauriens Chamaeleontidae. Genre Brookesia et complément pour le genre Chamaeleo. Faune Madagascar 47, 1–174 (1978)
Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999)
Martínez-Meyer, E. Evolutionary Trends in Ecological Niches of Species. Thesis, Univ. Kansas (2002)
Mittermeier, R. A., Myers, N., Thomsen, J. B. & da Fonseca, G. A. B. Biodiversity hotspots and major tropical wilderness areas: Approaches to setting conservation priorities. Conserv. Biol. 12, 516–520 (1998)
Andreone, F., Vences, M. & Randrianirina, J. E. Patterns of amphibian and reptile diversity at Berera Forest (Sahamalaza Peninsula), NW Madagascar. Ital. J. Zool. (Modena) 68, 235–241 (2001)
Goodman, S. M. et al. Inventaire biologique de la Forêt d'Ankazomivady, Ambositra. Akon'ny Ala 24, 19–32 (1998)
Goodman, S. M. et al. Inventaire des vertébrés du Parc National de Tsimanampetsotsa (Toliara). Akon'ny Ala 28, 1–36 (2002)
Rakotomalala, D. Diversité des reptiles et amphibiens de la Réserve Spéciale de Manongarivo, Madagascar. Boissiera 59, 339–358 (2002)
Rakotomalala, D., Raholimavo, E., Talata, P. & Rajeriarison, E. Les amphibiens et reptiles du Parc National de Ranomafana et de la zone forestiere le reliant au Parc National d'Andringitra. Rech. Dév. Série Sci. Biol. 17, 133–163 (2001)
Raselimanana, A. P. Inventaire biologique, Forêt d'Andranomay, Anjozorobe: La diversité de la faune de reptiles et d'amphibiens. Rech. Dév. Série Sci. Biol. 13, 43–59 (1998)
Raselimanana, A. P. Inventaire biologique de la Réserve Spéciale de Pic d'Ivohibe et du couloire forestier qui la relie au Parc National d'Andringitra: L'herpetofauna. Rech. Dév. Série Sci. Biol. 15, 81–97 (1999)
Raselimanana, A. P., Rakotomalala, D. & Rakotondraparany, F. Inventaire biologique de la forêt littorale de Tampolo (Fenoarivo Atsinanana). Les reptiles et amphibiens: Diversité et conservations. Rech. Dév. Série Sci. Biol. 14, 183–195 (1998)
Raxworthy, C. J., Forstner, M. R. J. & Nussbaum, R. A. Chameleon radiation by oceanic dispersal. Nature 415, 784–787 (2002)
ESRI. ArcAtlas (Environmental Systems Research Institute, Redlands, California, 1997)
New, M., Hulme, M. & Jones, P. A 1961–1990 Mean Monthly Climatology of Global Land Areas (Climatic Research Unit, University of East Anglia, Norwich, 1997)
Peterson, A. T. & Cohoon, K. C. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecol. Mod. 117, 159–164 (1999)
Anderson, R. P., Lew, D. & Peterson, A. T. Evaluating predictive models of species' distributions: Criteria for selecting optimal models. Ecol. Mod. 162, 211–232 (2003)
Anderson, R. P., Laverde, M. & Peterson, A. T. Geographical distributions of spiny pocket mice in South America: Insights from predictive models. Global Ecol. Biogeogr. 11, 131–141 (2002)
Acknowledgements
We thank the Malagasy authorities and the University of Antananarivo Department of Animal Biology for their assistance. Fieldwork (C.J.R and R.A.N) was supported by Conservation International, Earthwatch, the National Geographic Society, the US National Science Foundation and the World Wide Fund for Nature. This work was supported by NASA and the Center for Biodiversity and Conservation at the American Museum of Natural History.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare they have no competing financial interests.
Rights and permissions
About this article
Cite this article
Raxworthy, C., Martinez-Meyer, E., Horning, N. et al. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837–841 (2003). https://doi.org/10.1038/nature02205
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature02205
This article is cited by
-
Current potential geographic distribution of an extremely rare and threatened orchid bee (Hymenoptera: Apidae) from eastern Brazil, including a new geographic record
Journal of Insect Conservation (2024)
-
Predicted changes in the distribution of Ostracoda (Crustacea) from river basins in the southern cone of South America, under two climate change scenarios
Hydrobiologia (2023)
-
Buchanania cochinchinensis (Lour.) M.R. Almedia habitat exhibited robust adaptability to diverse socioeconomic scenarios in eastern India
Environmental Monitoring and Assessment (2023)
-
Appraisal of the potential habitat distribution of Madhuca longifolia manifested remarkable resilience under various socio-climatic scenarios pan-India
Modeling Earth Systems and Environment (2023)
-
Efficacy of species distribution models (SDMs) for ecological realms to ascertain biological conservation and practices
Biodiversity and Conservation (2023)