A satellite view of aerosols in the climate system | Nature
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A satellite view of aerosols in the climate system

Abstract

Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but warming the atmosphere in the process. These effects of aerosols on the temperature profile, along with the role of aerosols as cloud condensation nuclei, impact the hydrologic cycle, through changes in cloud cover, cloud properties and precipitation. Unravelling these feedbacks is particularly difficult because aerosols take a multitude of shapes and forms, ranging from desert dust to urban pollution, and because aerosol concentrations vary strongly over time and space. To accurately study aerosol distribution and composition therefore requires continuous observations from satellites, networks of ground-based instruments and dedicated field experiments. Increases in aerosol concentration and changes in their composition, driven by industrialization and an expanding population, may adversely affect the Earth's climate and water supply.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global distribution of fine and coarse aerosol optical thickness (AOT) derived from MODIS measurements on the NASA Terra spacecraft for September 2000.
Figure 2: Model results of Chin et al.23 that correspond to the MODIS data of September 2000.
Figure 3: Satellite data and model calculations for a dust episode in east Asia advected over a pollution layer on 20 March 2001.
Figure 4: Comparison between concentration of anthropogenic aerosol and population density.
Figure 5: Solar radiative perturbation at the top of the atmosphere and the surface for the tropical Atlantic and Indian Ocean.
Figure 6: Schematic diagram of cloud formation in a clean and polluted atmosphere.
Figure 7: Effect of aerosol on cloud droplet and reflectance derived from POLDER and AVHRR spaceborne measurements.

Similar content being viewed by others

References

  1. Intergovernmental Panel on Climate Change. Climate Change 2001—The Scientific Basis (contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change) (Cambridge Univ. Press, Cambridge, 2001).

  2. Ramanathan, V. et al. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).

    ADS  CAS  PubMed  Google Scholar 

  3. Andreae, M. O. et al. External mixture of sea salt, silicates, and excess sulfate in marine aerosols. Science 232, 1620–1623 (1986).

    ADS  CAS  PubMed  Google Scholar 

  4. Keeling, C. D. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12, 200–203 (1960).

    ADS  Google Scholar 

  5. Husar, R. B., Prospero, J. & Stowe, L. L. Characterization of tropospheric aerosols over the oceans with the NOAA AVHRR optical thickness operational product. J. Geophys. Res. 102, 16889–16909 (1997).

    ADS  CAS  Google Scholar 

  6. Herman, J. R. et al. Global distribution of UV-absorbing aerosol from Nimbus-7/TOMS data. J. Geophys. Res. 102, 16911–16922 (1997).

    ADS  CAS  Google Scholar 

  7. Prospero, J. M. & Nees, R. T. Impact of the North African drought and El Niño on mineral dust in the Barbados trade wind. Nature 320, 735–738 (1986).

    ADS  Google Scholar 

  8. Clarke, A. D. & Charlson, R. J. Radiative properties of the background aerosol: absorption component of extinction. Science 229, 263–265 (1985).

    ADS  CAS  PubMed  Google Scholar 

  9. Twomey, S. A., Piepgrass, M. & Wolfe, T. L. An assessment of the impact of pollution on the global albedo. Tellus 36B, 356–366 (1984).

    ADS  CAS  Google Scholar 

  10. Charlson, R. J. et al. Climate forcing of anthropogenic aerosols. Science 255, 423–430 (1992).

    ADS  CAS  PubMed  Google Scholar 

  11. Kiehl, J. T. & Briegleb, B. P. The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311–314 (1993).

    ADS  CAS  PubMed  Google Scholar 

  12. Satheesh, S. K. & Ramanathan, V. Large differences in tropical aerosol forcing at the top of the atmosphere and Earth's surface. Nature 405, 60–63 (2000).

    ADS  CAS  PubMed  Google Scholar 

  13. Eck, T. F. et al. Measurements of irradiance attenuation and estimation of the aerosol single scattering albedo for biomass burning in Amazonia. J. Geophys. Res. 103, 31865–31878 (1998).

    ADS  CAS  Google Scholar 

  14. Hansen, J., Sato, M. & Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. 102, 6831–6864 (1997).

    ADS  CAS  Google Scholar 

  15. Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1042–1047 (2000).

    ADS  CAS  PubMed  Google Scholar 

  16. Kaufman, Y. J. & Fraser, R. S. Confirmation of the smoke particles effect on clouds and climate. Science 277, 1636–1639 (1997).

    CAS  Google Scholar 

  17. Nakajima, T. et al. A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett. 28, 1171–1174 (2001).

    ADS  CAS  Google Scholar 

  18. Coakley, J. A. Jr, Bernstein, R. L. & Durkee, P. A. Effect of ship stack effluents on cloud reflectance. Science 237, 953–956 (1987).

    Google Scholar 

  19. Kaufman, Y. J. & Nakajima, T. Effect of Amazon smoke on cloud microphysics and albedo. J. Appl. Meteorol. 32, 729–744 (1993).

    ADS  Google Scholar 

  20. Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105–3108 (1999).

    ADS  Google Scholar 

  21. Rosenfeld, D. Suppression of rain and snow by urban and industrial air pollution. Science 287, 1793–1796 (2000).

    ADS  CAS  PubMed  Google Scholar 

  22. Boucher, O. & Haywood, J. On summing the components of radiative forcing of climate change. Clim. Dynam. 18, 297–302 (2001).

    ADS  Google Scholar 

  23. Chin, M et al. Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. J. Atmos. Sci. 59, 461–483 (2002).

    ADS  Google Scholar 

  24. King, M. D. et al. Remote sensing of tropospheric aerosols from space: past, present and future. Bull. Am. Meteorol. Soc. 80, 2229–2259 (1999).

    ADS  Google Scholar 

  25. Tanré, D. et al. Remote sensing of aerosol over oceans from EOS-MODIS. J. Geophys. Res. 102, 16971–16988 (1997).

    ADS  Google Scholar 

  26. Deuzé, J.-L. et al. Estimate of the aerosol properties over the ocean with POLDER. J. Geophys. Res. 105, 15329–15346 (2000).

    ADS  Google Scholar 

  27. Diner, D. J. et al. MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 dry season campaign. Geophys. Res. Lett. 28, 3127–3130 (2001).

    ADS  CAS  Google Scholar 

  28. Veefkind, J. P., de Leeuw, G. & Durkee, P. A. Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX. Geophys. Res. Lett. 25, 3135–3138 (1998).

    ADS  CAS  Google Scholar 

  29. Delene, D. J. & Ogren, J. A. Variability of aerosol optical properties at four North American surface monitoring sites. J. Atmos. Sci. 59, 1135–1150 (2002).

    ADS  Google Scholar 

  30. Artaxo, P. et al. Large scale aerosol source apportionment in Amazonia. J. Geophys. Res. 103, 31837–31847 (1998).

    ADS  Google Scholar 

  31. Kaufman, Y. J. et al. The Smoke, Clouds and Radiation experiment in Brazil (SCAR-B). J. Geophys. Res. 103, 31783–31808 (1998).

    ADS  CAS  Google Scholar 

  32. Ramanathan, V. et al. The Indian Ocean Experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res. 106, 28371–28398 (2001).

    ADS  CAS  Google Scholar 

  33. Dubovik, O. et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59, 590–608 (2002).

    ADS  Google Scholar 

  34. Rotstayn, L. D., Ryan, B. F. & Penner, J. E. Precipitation changes in a GCM resulting from the indirect effects of anthropogenic aerosols. Geophys. Res. Lett. 27, 3045–3048 (2000).

    ADS  Google Scholar 

  35. Lohmann, U. & Feichter, J. Impact of sulfate aerosols on albedo and lifetime of clouds: a sensitivity study with the ECHAM4 GCM. J. Geophys. Res. Atmos. 102, 13685–13700 (1997).

    ADS  CAS  Google Scholar 

  36. Albrecht B. A. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230 (1989).

    ADS  CAS  PubMed  Google Scholar 

  37. Penner, J. E., Dickinson, R. E. & O'Neill, C. A. Effects of aerosol from biomass burning on the global radiation budget. Science 256, 1432–1433 (1992).

    ADS  CAS  PubMed  Google Scholar 

  38. Bréon, F.-M., Tanré, D. & Generoso, S. Aerosol effect on cloud droplet size monitored from satellite. Science 295, 834–838 (2002).

    ADS  PubMed  Google Scholar 

  39. Wielicki, B. A. et al. Clouds and the earth's radiant energy system (CERES): an earth observing system experiment. Bull. Am. Meteorol. Soc. 77, 853–868 (1996).

    ADS  Google Scholar 

  40. Herman, M. et al. Remote sensing of aerosol over land surfaces including polarization measurements and application to POLDER measurements. J. Geophys. Res. 102, 17039–17049 (1997).

    ADS  Google Scholar 

  41. Holben, B. N. et al. An emerging ground based aerosol climatology: aerosol optical depth from AERONET. J. Geophys. Res. 106, 12067–12097 (2001).

    ADS  Google Scholar 

  42. Prospero, J. M. Long term measurements of the transport of African mineral dust to the Southern US: implications for regional air quality. J. Geophys. Res. 104, 15917–15927 (1999).

    ADS  CAS  Google Scholar 

  43. Bates T. S. et al. International Global Atmospheric Chemistry (IGAC) project's first aerosol characterization experiment ACE-1: overview. J. Geophys. Res. 103, 16297–16318 (1998).

    ADS  CAS  Google Scholar 

  44. Takemura, T. et al. Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J. Clim. 15, 333–352 (2002).

    ADS  Google Scholar 

  45. Luo Y. F. et al. Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. J. Geophys. Res. 106, 14501–14513 (2001).

    ADS  CAS  Google Scholar 

  46. Novakov, T., Hegg, D. A. & Hobbs, P. V. Airborne measurements of carbonaceous aerosols on the East Coast of the United States. J. Geophys. Res. 102, 30023–30030 (1997).

    ADS  CAS  Google Scholar 

  47. Hegg, D. A. et al. Chemical apportionment of aerosol column optical depth off the mid-Atlantic coast of the United States. J. Geophys. Res. 102, 25293–25303 (1997).

    ADS  CAS  Google Scholar 

  48. Ackerman, T. P. & Toon, O. B. Absorption of visible radiation in atmosphere containing mixtures of absorbing and non-absorbing particles. Appl. Opt. 20, 3661–3668 (1981).

    ADS  CAS  PubMed  Google Scholar 

  49. Martins, J. V. et al. Effects of black carbon content, particle size, and mixing on light absorption by aerosol particles from biomass burning in Brazil. J. Geophys. Res. 103, 32041–32050 (1998).

    ADS  CAS  Google Scholar 

  50. Haywood, J. & Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 38, 513–543 (2000).

    ADS  CAS  Google Scholar 

  51. Jacobson, M. Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695–697 (2001).

    ADS  CAS  PubMed  Google Scholar 

  52. Eck, T. F. et al. Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign. J. Geophys. Res. 106, 3425–3448 (2001).

    ADS  Google Scholar 

  53. Ross, J. L., Hobbs, P. V. & Holben, B. Radiative characteristics of regional hazes dominated by smoke from biomass burning in Brazil: closure tests and direct radiative forcing. J. Geophys. Res. 103, 31925–31941 (1998).

    ADS  Google Scholar 

  54. Liousse, C. et al. A Three-dimensional model study of carbonaceous aerosols. J. Geophys. Res. 101, 19411–19432 (1996).

    ADS  CAS  Google Scholar 

  55. Prospero, J. M. et al. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS-7 TOMS absorbing aerosol product. Geophys. Rev. (in the press).

  56. Sokolik, I. N. & Toon, O. B. Direct radiative forcing by anthropogenic airborne mineral aerosol. Nature 381, 681–683 (1996).

    ADS  CAS  Google Scholar 

  57. Moulin, C. et al. Control of atmospheric export of dust from North Africa by the North Atlantic oscillation. Nature 387, 691–694 (1997).

    ADS  CAS  Google Scholar 

  58. Tanré, D. et al. Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum. J. Geophys. Res. 106, 18205–18218 (2001).

    ADS  Google Scholar 

  59. Clarke, A. D. & Kapustin, V. N. A Pacific aerosol survey, part 1: a decade of data on particle formation, transport, evolution, and mixing in the troposphere. J. Atmos. Sci. 59, 363–382 (2002).

    ADS  Google Scholar 

  60. Gao, Y. et al. Seasonal distribution of Aeolian iron fluxes to the global ocean. Geophys. Res. Lett. 28, 29–33 (2001).

    ADS  CAS  Google Scholar 

  61. Hoppel, W. A. et al. Aerosol size distribution and optical properties found in the marine boundary layer over the Atlantic Ocean. J. Geophys. Res. 95, 3659–3686 (1990).

    ADS  Google Scholar 

  62. Smirnov, A. et al. Optical properties of atmospheric aerosol in maritime environments. J. Atmos. Sci. 59, 501–523 (2002).

    ADS  Google Scholar 

  63. Levin, Z., Ganor, E. & Gladstein, V. The effects of desert particles coated with sulfate on rain formation in the Eastern Mediterranean. J. Appl. Meteorol. 35, 1511–1523 (1996).

    ADS  Google Scholar 

  64. Leon, J. F. et al. Large-scale advection of continental aerosols during INDOEX. J. Geophys. Res. 106, 28427–28439 (2001).

    ADS  Google Scholar 

  65. Reiner T. et al. Chemical characterization of pollution layers over the tropical Indian Ocean: signatures of emissions from biomass and fossil fuel burning. J. Geophys. Res. 106, 28497–28510 (2001).

    ADS  CAS  Google Scholar 

  66. Liao, H. & Seinfeld, J. H. Effect of clouds on direct aerosol radiative forcing of climate. J. Geophys. Res. 103, 3781–3788 (1998).

    ADS  CAS  Google Scholar 

  67. Formenti, P. et al. Aerosol optical properties and large-scale transport of air masses: observations at a coastal and a semiarid site in the eastern Mediterranean during summer 1998. J. Geophys. Res. 106, 9807–9826 (2001).

    ADS  Google Scholar 

  68. Gobbi, G. P. et al. Altitude-resolved properties of a Saharan dust event over the Mediterranean. Atmos. Environ. 34, 5119–5127 (2000).

    ADS  CAS  Google Scholar 

  69. Kreidenweis, S. M. et al. Smoke aerosol from biomass burning in Mexico: hygroscopic smoke optical model. J. Geophys. Res. 106, 4831–4844 (2001).

    ADS  CAS  Google Scholar 

  70. Winker, D. M., Couch, R. H. & McCormick, M. P. An overview of LITE: NASA's lidar in-space technology experiment. Proc. IEEE 84, 164–180 (1996).

    Google Scholar 

  71. Heymsfield A. J. & McFarquhar, G. M. Microphysics of INDOEX clean and polluted trade cumulus clouds. J. Geophys. Res. 106, 28653–28674 (2001).

    ADS  Google Scholar 

  72. Han, Q., Rossow, W. B. & Lacis, A. A. Near global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Clim. 7, 465–496 (1994).

    ADS  Google Scholar 

  73. Boucher, O. GCM estimate of the indirect aerosol forcing using satellite-retrieved cloud droplet effective radii. J. Clim. 8, 1403–1409 (1995).

    ADS  Google Scholar 

  74. Feingold, G. et al. Analysis of smoke impact on clouds in Brazilian biomass burning regions: an extension of Twomey's approach. J. Geophys. Res. 106, 22907–22922 (2001).

    ADS  Google Scholar 

  75. Feingold, G. et al. The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: implications for cloud radiative properties. J. Atmos. Sci. 56, 4100–4117 (1999).

    ADS  Google Scholar 

  76. Charlson, R. J. et al. Reshaping the theory of cloud formation. Science 292, 2025–2026 (2001).

    CAS  PubMed  Google Scholar 

  77. Feingold, G. & Chuang, P. Y. Analysis of the influence of film-forming compounds on droplet growth: implications for cloud microphysical processes and climate. J. Atmos. Sci, 59, 2006–2018 (2002).

    ADS  Google Scholar 

  78. Rosenfeld, D. & Woodley, W. L. K. Deep convective clouds with sustained supercooled liquid water down to −37.5 °C. Nature 405, 440–442 (2001).

    ADS  Google Scholar 

  79. Khain, A. P., Rosenfeld, D. & Pokrovsky, A. Simulating convective clouds with sustained supercooled liquid water down to −37.5 °C using a spectral microphysics model. Geophys. Res. Lett. 28, 3887–3890 (2001).

    ADS  Google Scholar 

  80. Alpert, P. et al. Quantification of dust-forced heating of the lower troposphere. Nature 395, 367–370 (1998).

    ADS  CAS  Google Scholar 

  81. Claquin, T. et al. Uncertainties in assessing radiative forcing by mineral dust. Tellus 50B, 491–505 (1998).

    ADS  CAS  Google Scholar 

  82. Kaufman, Y. J. et al. Satellite and ground-based radiometers reveal much lower dust absorption of sunlight than used in climate models. Geophys. Res. Lett. 28, 1479–1483 (2001).

    ADS  Google Scholar 

  83. Bond, T. C., Charlson, R. J. & Heintzenberg, J. Quantifying the emission of light-absorbing particles: measurements tailored to climate studies. Geophys. Res. Lett. 25, 337–340 (1998).

    ADS  Google Scholar 

  84. Christopher, S. A. et al. First estimates of the radiative forcing of aerosol generated from biomass burning using satellite data. J. Geophys. Res. 101, 21265–21273 (1996).

    ADS  Google Scholar 

  85. Li, Z. & Kou, L. Atmospheric direct radiative forcing by smoke aerosols determined from satellite and surface measurements. Tellus 50B, 543–554 (1998).

    ADS  CAS  Google Scholar 

  86. Collins, W. D. et al. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: methodology for INDOEX. J. Geophys. Res. 106, 7313–7336 (2001).

    ADS  CAS  Google Scholar 

  87. Satheesh, S. K. et al. A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data. J. Geophys. Res. 104, 27421–27440 (1999).

    ADS  CAS  Google Scholar 

  88. Remer, L. A. et al. Urban/industrial aerosol: ground based sun/sky radiometer and airborne in situ measurements. J. Geophys. Res. 102, 16849–16859 (1997).

    ADS  Google Scholar 

  89. Chou, M. D. A solar-radiation model for use in climate studies. J. Atmos. Sci. 49, 762–772 (1992).

    ADS  Google Scholar 

  90. Liu M., & Westphal, D. L. A study of the sensitivity of simulated mineral dust production to model resolution. J. Geophys. Res. 106, 18099–18112 (2001).

    ADS  CAS  Google Scholar 

  91. Fraser, R. S., Kaufman, Y. J. & Mahoney, R. L. Satellite measurements of aerosol mass and transport. Atmos. Environ. 18, 2577–2584 (1984).

    ADS  CAS  Google Scholar 

  92. Hsu, N. C., Herman, J. R. & Weaver, C. Determination of radiative forcing of Saharan dust using combined TOMS and ERBE. J. Geophys. Res. 105, 20649–20661 (2000).

    ADS  Google Scholar 

  93. Torres O. et al. A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci. 59, 398–413 (2002).

    ADS  Google Scholar 

  94. Chu, D. A. et al. Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett. (in the press).

  95. Remer, L. A. et al. Validation of MODIS aerosol retrieval over ocean. Geophys. Res. Lett. (in the press).

  96. Kaufman, Y. J. et al. Remote sensing of tropospheric aerosol from EOS-MODIS over the land using dark targets and dynamic aerosol models. J. Geophys. Res. 102, 17051–17067 (1997).

    ADS  CAS  Google Scholar 

  97. Fraser, R. S. & Kaufman, Y. J. The relative importance of aerosol scattering and absorption in remote sensing. IEEE J. Geosci. Rem. Sens. GE-23, 525–633 (1985).

    Google Scholar 

  98. Fouquart, Y. et al. Observations of Saharan aerosols: results of ECLATS field experiment. II: Broadband radiative characteristics of the aerosols and vertical radiative flux divergence. J. Clim. Appl. Meteorol. 25, 28–37 (1986).

    Google Scholar 

  99. Mishchenko, M. I. & Travis, L. D. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J. Geophys. Res. 102, 16989–17013 (1997).

    ADS  Google Scholar 

  100. Chowdhary, J., Cains, B. & Travis, L. D. Case studies of aerosol retrieval over the ocean from multiangle, multispectral photopolarimetric remote sensing data. J. Atmos. Sci. 59, 383–397 (2002).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank F. M. Bréon, M. Chin, O. Dubovik, G. Feingold, P. Formenti, M. Herman, D. Herring, B. N. Holben, S. Mattoo, L. Remer and D. Rosenfeld for measurements and calculations used in this paper and for editorial comments. POLDER was a CNES/NASDA project; TOMS and MODIS are NASA projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram J. Kaufman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaufman, Y., Tanré, D. & Boucher, O. A satellite view of aerosols in the climate system. Nature 419, 215–223 (2002). https://doi.org/10.1038/nature01091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01091

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing