Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics | Nature Reviews Materials
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics

Abstract

Low-dimensional piezoelectric semiconductor nanomaterials, such as ZnO and GaN, have superior mechanical properties and can be integrated into flexible devices that can be subjected to large strain. More importantly, the coupling between piezoelectric polarization and semiconductor properties (for example, electronic transport and photoexcitation) in these materials gives rise to unprecedented device characteristics. This has increased research interest in the emerging fields of piezotronics and piezo-phototronics, which offer new means of manipulating charge-carrier transport, generation, recombination or separation in the controlled operation of flexible devices through the application of external mechanical stimuli. We review the recent progress in advancing our fundamental understanding and in realizing practical applications of piezotronics and piezo-phototronics, and provide an in-depth discussion of future research directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New research directions and applications of piezotronics and piezo-phototronics.
Figure 2: Array integration of vertical-nanowire piezotronic transistors for pressure imaging.
Figure 3: Piezotronics in atomically thin piezoelectric semiconductors.
Figure 4: Piezo-phototronic LED array for pressure imaging.
Figure 5: Piezo-phototronic luminescence devices for adaptive sensing.
Figure 6: Numerical simulations of strain-induced band deformation and device operation in piezo-phototronics.

Similar content being viewed by others

References

  1. Bonato, P. Wearable sensors and systems from enabling technology to clinical applications. IEEE Eng. Med. Biol. 29, 25–36 (2010).

    Google Scholar 

  2. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    CAS  Google Scholar 

  3. Heng, W., Conrad, N., Wei, L. & Ye, P. D. in 2014 IEEE International Electron Devices Meeting 9.3.1–9.3.4 (San Francisco, 2014).

    Google Scholar 

  4. Muller, R. S., Kamins, T. I. & Chan, M. Device Electronics for Integrated Circuits 3rd edn (John Wiley & Sons, 2003).

    Google Scholar 

  5. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    CAS  Google Scholar 

  6. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS  Google Scholar 

  7. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

    CAS  Google Scholar 

  8. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. F. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    CAS  Google Scholar 

  9. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

    CAS  Google Scholar 

  10. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014).

    CAS  Google Scholar 

  11. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  12. Kingon, A. I. & Srinivasan, S. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications. Nat. Mater. 4, 233–237 (2005).

    CAS  Google Scholar 

  13. Ferren, R. A. Advances in polymeric piezoelectric transducers. Nature 350, 26–27 (1991).

    Google Scholar 

  14. Chen C. Q. & Zhu, J. Bending strength and flexibility of ZnO nanowires. Appl. Phys. Lett. 90 043105 (2007).

    Google Scholar 

  15. Li, P. et al. In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain. Nano Lett. 14, 480–485 (2014).

    CAS  Google Scholar 

  16. Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).

    CAS  Google Scholar 

  17. Wu, W. Z., Wen, X. N. & Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013).

    CAS  Google Scholar 

  18. Pan, C. F. et al. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 7, 752–758 (2013).

    CAS  Google Scholar 

  19. Wu, W. Z. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    CAS  Google Scholar 

  20. Qi J. J. et al. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 6 7430 (2015).

    CAS  Google Scholar 

  21. Li, H. X., Yu, Y. H., Starr, M. B., Li, Z. D. & Wang, X. D. Piezotronic-enhanced photoelectrochemical reactions in Ni(OH)2-decorated ZnO photoanodes. J. Phys. Chem. Lett. 6, 3410–3416 (2015).

    CAS  Google Scholar 

  22. Yang, S. Z. et al. The piezotronic effect of zinc oxide nanowires studied by in situ TEM. Adv. Mater. 24, 4676–4682 (2012).

    CAS  Google Scholar 

  23. Baraki R. et al. Varistor piezotronics: mechanically tuned conductivity in varistors. J. Appl. Phys. 118, 085703 (2015).

    Google Scholar 

  24. Wang, Z. L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010).

    Google Scholar 

  25. Zhou, J. et al. Flexible piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008).

    CAS  Google Scholar 

  26. Wu, W. Z., Wei, Y. G. & Wang, Z. L. Strain-gated piezotronic logic nanodevices. Adv. Mater. 22, 4711–4715 (2010).

    CAS  Google Scholar 

  27. Shi, J., Starr, M. B. & Wang, X. D. Band structure engineering at heterojunction interfaces via the piezotronic effect. Adv. Mater. 24, 4683–4691 (2012).

    CAS  Google Scholar 

  28. Wang, Z. L. Piezotronics and Piezo-Phototronics (Springer, 2013).

    Google Scholar 

  29. Hu, Y. F., Zhang, Y., Chang, Y. L., Snyder, R. L. & Wang, Z. L. Optimizing the power output of a ZnO photocell by piezopotential. ACS Nano 4, 4220–4224 (2010).

    CAS  Google Scholar 

  30. Hu, Y. F. et al. Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. Nano Lett. 12, 3851–3856 (2012).

    CAS  Google Scholar 

  31. Yang, Q. et al. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 13, 607–613 (2013).

    CAS  Google Scholar 

  32. Wu, W. Z., Pan, C. F., Zhang, Y., Wen, X. N. & Wang, Z. L. Piezotronics and piezo-phototronics — from single nanodevices to array of devices and then to integrated functional system. Nano Today 8, 619–642 (2013).

    CAS  Google Scholar 

  33. Wang, Z. L. & Wu, W. Z. Piezotronics and piezo-phototronics: fundamentals and applications. Natl Sci. Rev. 1, 62–90 (2014).

    CAS  Google Scholar 

  34. Kroemer, H. Nobel Lecture. Quasielectric fields and band offsets: teaching electrons new tricks. Rev. Modern Phys. 73, 783–793 (2001).

    CAS  Google Scholar 

  35. Lin, Y. F. & Jian, W. B. The impact of nanocontact on nanowire based nanoelectronics. Nano Lett. 8, 3146–3150 (2008).

    CAS  Google Scholar 

  36. Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    CAS  Google Scholar 

  37. Yajima T. et al. Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces. Nat. Commun. 6 6759 (2015).

    Google Scholar 

  38. Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701–706 (2008).

    CAS  Google Scholar 

  39. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotechnol. 8, 497–501 (2013).

    CAS  Google Scholar 

  40. Habisreutinger, S. N., Schmidt-Mende, L. & Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. Engl. 52, 7372–7408 (2013).

    CAS  Google Scholar 

  41. Luo, J. S. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    CAS  Google Scholar 

  42. Ozgur, U. et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).

    Google Scholar 

  43. Wang, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng R–Rep. 64, 33–71 (2009).

    Google Scholar 

  44. Joo, J., Chow, B. Y., Prakash, M., Boyden, E. S. & Jacobson, J. M. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nat. Mater. 10, 596–601 (2011).

    CAS  Google Scholar 

  45. Wei, Y. et al. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Lett. 10, 3414–3419 (2010).

    CAS  Google Scholar 

  46. Zhou, J. et al. Piezoelectric-potential-control led polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 8, 3973–3977 (2008).

    CAS  Google Scholar 

  47. Fei, P. et al. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire. Nano Lett. 9, 3435–3439 (2009).

    CAS  Google Scholar 

  48. Xu, Z. et al. Lateral piezopotential-gated field-effect transistor of ZnO nanowires. Nano Energy 13, 233–239 (2015).

    CAS  Google Scholar 

  49. Wang, X. et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006).

    CAS  Google Scholar 

  50. Liu, W. H., Lee, M., Ding, L., Liu, J. & Wang, Z. L. Piezopotential gated nanowire–nanotube hybrid field-effect transistor. Nano Lett. 10, 3084–3089 (2010).

    CAS  Google Scholar 

  51. Sun, Q. et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 27, 3411–3417 (2015).

    CAS  Google Scholar 

  52. Chen, L. et al. Strain-gated field effect transistor of a MoS2–ZnO 2D–1D hybrid structure. ACS Nano 10, 1546–1551 (2015).

    Google Scholar 

  53. Han, W. H. et al. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS Nano 6, 3760–3766 (2012).

    CAS  Google Scholar 

  54. Zhou, Y. S. et al. Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices. ACS Nano 6, 6478–6482 (2012).

    CAS  Google Scholar 

  55. Yu, R., Wu, W., Ding, Y. & Wang, Z. L. GaN nanobelt-based strain-gated piezotronic logic devices and computation. ACS Nano 7, 6403–6409 (2013).

    CAS  Google Scholar 

  56. Zhu, R. & Yang, R. S. Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire. Nanotechnology 25, 345702 (2014).

    Google Scholar 

  57. Wu, W. Z. & Wang, Z. L. Piezotronic nanowire-based resistive switches as programmable electromechanical memories. Nano Lett. 11, 2779–2785 (2011).

    CAS  Google Scholar 

  58. Pradel, K. C. et al. Piezotronic effect in solution-grown p-type ZnO nanowires and films. Nano Lett. 13, 2647–2653 (2013).

    CAS  Google Scholar 

  59. Zhang, J. & Meguid, S. A. On the piezoelectric potential of gallium nitride nanotubes. Nano Energy 12, 322–330 (2015).

    CAS  Google Scholar 

  60. Yu, R. M. et al. Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics. Adv. Mater. 24, 3532–3537 (2012).

    CAS  Google Scholar 

  61. Liu, H. F., Liu, W., Chua, S. J. & Chi, D. Z. Fabricating high-quality GaN-based nanobelts by strain-controlled cracking of thin solid films for application in piezotronics. Nano Energy 1, 316–321 (2012).

    CAS  Google Scholar 

  62. Yu, R. M. et al. Temperature dependence of the piezophototronic effect in CdS nanowires. Adv. Funct. Mater. 25, 5277–5284 (2015).

    CAS  Google Scholar 

  63. Rai S. C. et al. Enhanced broad band photodetection through piezo-phototronic effect in CdSe/ZnTe core/shell nanowire array. Adv. Electron. Mater. 1 1400050 (2015).

    Google Scholar 

  64. Li, X. et al. Remarkable and crystal-structure-dependent piezoelectric and piezoresistive effects of InAs nanowires. Adv. Mater. 27, 2852–2858 (2015).

    CAS  Google Scholar 

  65. Ku, N. J., Huang, J. H., Wang, C. H., Fang, H. C. & Liu, C. P. Crystal face-dependent nanopiezotronics of an obliquely aligned InN nanorod array. Nano Lett. 12, 562–568 (2012).

    CAS  Google Scholar 

  66. Wu, J. M., Chen, K. H., Zhang, Y. & Wang, Z. L. A self-powered piezotronic strain sensor based on single ZnSnO3 microbelts. RSC Adv. 3, 25184–25189 (2013).

    CAS  Google Scholar 

  67. Wu, J. M. et al. Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. ACS Nano 6, 4369–4374 (2012).

    CAS  Google Scholar 

  68. Hou, T.-C. et al. Nanogenerator based on zinc blende CdTe micro/nanowires. Nano Energy 2, 387–393 (2013).

    CAS  Google Scholar 

  69. Chen, Y. Y., Wang, C. H., Chen, G. S., Li, Y. C. & Liu, C. P. Self-powered n-MgxZn1−xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect. Nano Energy 11, 533–539 (2015).

    CAS  Google Scholar 

  70. Wang, C. H., Lai, K. Y., Li, Y. C., Chen, Y. C. & Liu, C. P. Ultrasensitive thin-film-based AlxGa1−x N piezotronic strain sensors via alloying-enhanced piezoelectric potential. Adv. Mater. 27, 6289–6295 (2015).

    CAS  Google Scholar 

  71. Liao, X. Q. et al. Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nano layer. ACS Appl. Mater. Interfaces 7, 1602–1607 (2015).

    CAS  Google Scholar 

  72. Zhang, Z., Liao, Q. L., Yu, Y. H., Wang, X. D. & Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 9, 237–244 (2014).

    CAS  Google Scholar 

  73. Liao, Q. L., Liang, M. Y., Zhang, Z., Zhang, G. J. & Zhang, Y. Strain-modulation and service behavior of Au–MgO–ZnO ultraviolet photodetector by piezo-phototronic effect. Nano Res. 8, 3772–3779 (2015).

    CAS  Google Scholar 

  74. Pradel, K. C., Wu, W., Ding, Y. & Wang, Z. L. Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition. Nano Lett. 14, 6897–6905 (2014).

    CAS  Google Scholar 

  75. Lin, P. et al. Enhanced photoresponse of Cu2O/ZnO heterojunction with piezo-modulated interface engineering. Nano Res. 7, 860–868 (2014).

    CAS  Google Scholar 

  76. Jalali, N. et al. Improved performance of p–n junction-based ZnO nanogenerators through CuSCN-passivation of ZnO nanorods. J. Mater. Chem. A 2, 10945–10951 (2014).

    CAS  Google Scholar 

  77. Lin, P. et al. Self-powered UV photosensor based on PEDOT:PSS/ZnO micro/nanowire with strain-modulated photoresponse. ACS Appl. Mater. Interfaces 5, 3671–3676 (2013).

    CAS  Google Scholar 

  78. Yang, Y. et al. Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells. Nano Lett. 11, 4812–4817 (2011).

    CAS  Google Scholar 

  79. Araneo, R. & Falconi, C. Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion. Nanotechnology 24, 265707 (2013).

    Google Scholar 

  80. Zhang, R. Y. et al. Piezoelectric gated ZnO nanowire diode studied by in situ TEM probing. Nano Energy 3, 10–15 (2014).

    CAS  Google Scholar 

  81. Zhao, Z. F. et al. Piezotronic effect in polarity-controlled GaN nanowires. ACS Nano 9, 8578–8583 (2015).

    CAS  Google Scholar 

  82. Wang, X. et al. Temperature dependence of the piezotronic and piezophototronic effects in a-axis GaN nanobelts. Adv. Mater. 27, 8067–8074 (2015).

    CAS  Google Scholar 

  83. Yu, R. et al. Piezotronic effect in strain-gated transistor of a-axis GaN nanobelt. ACS Nano 9, 9822–9829 (2015).

    CAS  Google Scholar 

  84. Zhang, Z. et al. Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. Nanoscale 7, 1796–1801 (2015).

    CAS  Google Scholar 

  85. Wu, W., Pan, C., Zhang, Y., Wen, X. & Wang, Z. L. Piezotronics and piezo-phototronics — from single nanodevices to array of devices and then to integrated functional system. Nano Today 8, 619–642 (2013).

    CAS  Google Scholar 

  86. Xing, L. L. et al. Realizing room-temperature self-powered ethanol sensing of Au/ZnO nanowire arrays by coupling the piezotronics effect of ZnO and the catalysis of noble metal. Appl. Phys. Lett. 104, 013109 (2014).

    Google Scholar 

  87. Han, Y. et al. Piezotronic effect enhanced nanowire sensing of H2O2 released by cells. Nano Energy 13, 405–413 (2015).

    CAS  Google Scholar 

  88. Liao, Q. L. et al. Carbon fiber–ZnO nanowire hybrid structures for flexible and adaptable strain sensors. Nanoscale 5, 12350–12355 (2013).

    CAS  Google Scholar 

  89. Yu, R., Pan, C., Chen, J., Zhu, G. & Wang, Z. L. Enhanced performance of a ZnO nanowire-based self-powered glucose sensor by piezotronic effect. Adv. Funct. Mater. 23, 5868–5874 (2013).

    CAS  Google Scholar 

  90. Pan, C. F., Yu, R. M., Niu, S. M., Zhu, G. & Wang, Z. L. Piezotronic effect on the sensitivity and signal level of Schottky contacted proactive micro/nanowire nanosensors. ACS Nano 7, 1803–1810 (2013).

    CAS  Google Scholar 

  91. Yu, R. M., Pan, C. F. & Wang, Z. L. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energ Environ. Sci. 6, 494–499 (2013).

    CAS  Google Scholar 

  92. Niu, S. et al. Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect. Adv. Mater. 25, 3701–3706 (2013).

    CAS  Google Scholar 

  93. Wang, N. et al. Piezotronic-effect enhanced drug metabolism and sensing on a single ZnO nanowire surface with the presence of human cytochrome P450. ACS Nano 9, 3159–3168 (2015).

    CAS  Google Scholar 

  94. Zhou, R. R., Hu, G. F., Yu, R. M., Pan, C. F. & Wang, Z. L. Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors. Nano Energy 12, 588–596 (2015).

    CAS  Google Scholar 

  95. Hu, G. F. et al. Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Res. 7, 1083–1091 (2014).

    CAS  Google Scholar 

  96. Duerloo, K. A. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).

    CAS  Google Scholar 

  97. Ahmadpoor, F. & Sharma, P. Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale 7, 16555–16570 (2015).

    CAS  Google Scholar 

  98. Blonsky, M. N., Zhuang, H. L., Singh, A. K. & Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885–9891 (2015).

    CAS  Google Scholar 

  99. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  100. Castellanos-Gomez, A. et al. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012).

    CAS  Google Scholar 

  101. Manzeli, S., Allain, A., Ghadimi, A. & Kis, A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2 . Nano Lett. 15, 5330–5335 (2015).

    CAS  Google Scholar 

  102. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626–3630 (2013).

    CAS  Google Scholar 

  103. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    CAS  Google Scholar 

  104. Zhu, H. Y. et al. Observation of piezoelectricity in free-standing monolayer MoS2 . Nat. Nanotechnol. 10, 151–155 (2015).

    CAS  Google Scholar 

  105. Fei, R. X., Li, W. B., Li, J. & Yang, L. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107, 173104 (2015).

    Google Scholar 

  106. Gomes L. C., Carvalho, A. & Neto, A. H. C. Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. Phys. Rev. B 92, 214103 (2015).

    Google Scholar 

  107. Li, W. B. & Li, J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Res. 8, 3796–3802 (2015).

    CAS  Google Scholar 

  108. Alyoruk, M. M., Aierken, Y., Cakir, D., Peeters, F. M. & Sevik, C. Promising piezoelectric performance of single layer transition-metal dichalcogenides and dioxides. J. Phys. Chem. C 119, 23231–23237 (2015).

    CAS  Google Scholar 

  109. Wen, X. N., Wu, W. Z., Ding, Y. & Wang, Z. L. Piezotronic effect in flexible thin-film based devices. Adv. Mater. 25, 3371–3379 (2013).

    CAS  Google Scholar 

  110. Xue, F. et al. Piezotronic effect on ZnO nanowire film based temperature sensor. ACS Appl. Mater. Interfaces 6, 5955–5961 (2014).

    CAS  Google Scholar 

  111. Baraki, R., Novak, N., Froemling, T., Granzow, T. & Roedel, J. Bulk ZnO as piezotronic pressure sensor. Appl. Phys. Lett. 105 111604 (2014).

    Google Scholar 

  112. Raidl, N., Supancic, P., Danzer, R. & Hofstaetter, M. Piezotronically modified double Schottky barriers in ZnO varistors. Adv. Mater. 27, 2031–2035 (2015).

    CAS  Google Scholar 

  113. Zhang, Y., Liu, Y. & Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 23, 3004–3013 (2011).

    CAS  Google Scholar 

  114. Araneo, R. et al. Current–voltage characteristics of ZnO nanowires under uniaxial loading. IEEE Trans. Nanotechnol. 13, 724–735 (2014).

    CAS  Google Scholar 

  115. Mitin, V. V., Kochelap, V. A. & Stroscio, M. A. Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications (Cambridge University Press, 2008).

    Google Scholar 

  116. Liu, W., Zhang, A., Zhang, Y. & Lin Wang, Z. First principle simulations of piezotronic transistors. Nano Energy 14, 355–363 (2015).

    Google Scholar 

  117. Jin, L. S. & Li, L. J. Quantum simulation of ZnO nanowire piezotronics. Nano Energy 15, 776–781 (2015).

    CAS  Google Scholar 

  118. Zhang, G. H., Zheng, Y. & Wang, B. Dissimilar-electrodes-induced asymmetric characteristic and diode effect of current transport in zinc oxide tunnel junctions. J. Appl. Phys. 114, 044111 (2013).

    Google Scholar 

  119. Zhang, G. H., Luo, X., Zheng, Y. & Wang, B. A. Giant piezoelectric resistance effect of nanoscale zinc oxide tunnel junctions: first principles simulations. Phys. Chem. Chem. Phys. 14, 7051–7058 (2012).

    CAS  Google Scholar 

  120. Zhu, J., Chen, W. J., Zhang, G. H. & Zheng, Y. Exponential size-dependent tunability of strain on the transport behavior in ZnO tunnel junctions: an ab initio study. Phys. Chem. Chem. Phys. 17, 25583–25592 (2015).

    CAS  Google Scholar 

  121. Rinaldi, A., Araneo, R., Celozzi, S., Pea, M. & Notargiacomo, A. The clash of mechanical and electrical size-effects in ZnO nanowires and a double power law approach to elastic strain engineering of piezoelectric and piezotronic devices. Adv. Mater. 26, 5976–5985 (2014).

    CAS  Google Scholar 

  122. Araneo, R. et al. Thermal-electric model for piezoelectric ZnO nanowires. Nanotechnology 26, 265402 (2015).

    Google Scholar 

  123. Hu, G. W. et al. Piezotronic transistors in nonlinear circuit: model and simulation. Sci. China: Technol. Sci. 58, 1348–1354 (2015).

    CAS  Google Scholar 

  124. Al-Zahrani, H. Y. S., Pal, J., Migliorato, M. A., Tse, G. & Yu, D. Piezoelectric field enhancement in III–V core–shell nanowires. Nano Energy 14, 382–391 (2015).

    CAS  Google Scholar 

  125. Liu, W., Zhang, A. H., Zhang, Y. & Wang, Z. L. Density functional studies on edge-contacted single-layer MoS2 piezotronic transistors. Appl. Phys. Lett. 107, 083105 (2015).

    Google Scholar 

  126. Bhattacharya, P. Semiconductor Optoelectronic Devices 2nd edn (Prentice Hall, 1997).

    Google Scholar 

  127. Zhang, Y., Yang, Y. & Wang, Z. L. Piezo-phototronics effect on nano/microwire solar cells. Energy Environ. Sci. 5, 6850–6856 (2012).

    CAS  Google Scholar 

  128. Liu, Y., Yang, Q., Zhang, Y., Yang, Z. Y. & Wang, Z. L. Nanowire piezo-phototronic photodetector: theory and experimental design. Adv. Mater. 24, 1410–1417 (2012).

    CAS  Google Scholar 

  129. Yang, Q., Wang, W. H., Xu, S. & Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 11, 4012–4017 (2011).

    CAS  Google Scholar 

  130. Hu, Y., Chang, Y., Fei, P., Snyder, R. L. & Wang, Z. L. Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4, 1234–1240 (2010).

    CAS  Google Scholar 

  131. Yang, Q. et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano 4, 6285–6291 (2010).

    CAS  Google Scholar 

  132. Boxberg, F., Sondergaard, N. & Xu, H. Q. Photovoltaics with piezoelectric core–shell nanowires. Nano Lett. 10, 1108–1112 (2010).

    CAS  Google Scholar 

  133. Pan, C. F. et al. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Lett. 12, 3302–3307 (2012).

    CAS  Google Scholar 

  134. Shi, J., Zhao, P. & Wang, X. D. Piezoelectric-polarization-enhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 25, 916–921 (2013).

    Google Scholar 

  135. Wang, Z. Z. et al. Enhancing sensitivity of force sensor based on a ZnO tetrapod by piezo-phototronic effect. Appl. Phys. Lett. 103, 143125 (2013).

    Google Scholar 

  136. Zhang, F., Ding, Y., Zhang, Y., Zhang, X. L. & Wang, Z. L. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO–CdS core–shell micro/nanowire. ACS Nano 6, 9229–9236 (2012).

    CAS  Google Scholar 

  137. Dong, L. et al. Piezo-phototronic effect of CdSe nanowires. Adv. Mater. 24, 5470–5475 (2012).

    CAS  Google Scholar 

  138. Shi, J. et al. Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. Nano Lett. 11, 5587–5593 (2011).

    CAS  Google Scholar 

  139. Starr, M. B., Shi, J. & Wang, X. D. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew. Chem. Int. Ed. Engl. 51, 5962–5966 (2012).

    CAS  Google Scholar 

  140. Liao, Z. M. et al. Strain induced exciton fine-structure splitting and shift in bent ZnO microwires. Sci. Rep. 2, 452 (2012).

    Google Scholar 

  141. Han, X. B. et al. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 21, 4937–4941 (2009).

    CAS  Google Scholar 

  142. Wei, B. et al. Size-dependent bandgap modulation of ZnO nanowires by tensile strain. Nano Lett. 12, 4595–4599 (2012).

    CAS  Google Scholar 

  143. Dietrich, C. P. et al. Strain distribution in bent ZnO microwires. Appl. Phys. Lett. 98, 031105 (2011).

    Google Scholar 

  144. Fu, X. W., Liao, Z. M., Liu, R., Xu, J. & Yu, D. P. Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires. ACS Nano 7, 8891–8898 (2013).

    CAS  Google Scholar 

  145. Fu, X. W. et al. Tailoring exciton dynamics by elastic strain-gradient in semiconductors. Adv. Mater. 26, 2572–2579 (2014).

    CAS  Google Scholar 

  146. Xu, S. G., Guo, W. H., Du, S. W., Loy, M. M. T. & Wang, N. Piezotronic effects on the optical properties of ZnO nanowires. Nano Lett. 12, 5802–5807 (2012).

    CAS  Google Scholar 

  147. Lu, S. N. et al. Piezotronic interface engineering on ZnO/Au-based Schottky junction for enhanced photoresponse of a flexible self-powered UV detector. ACS Appl. Mater. Interfaces 6, 14116–14122 (2014).

    CAS  Google Scholar 

  148. Peng, M. et al. Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 10, 1572–1579 (2016).

    CAS  Google Scholar 

  149. Chen, J. X. et al. Strain-enhanced cable-type 3D UV photodetecting of ZnO nanowires on a Ni wire by coupling of piezotronics effect and pn junction. Opt. Express 22, 3661–3668 (2014).

    Google Scholar 

  150. Luo, Y. M. et al. Piezoelectric effect enhancing decay time of p-NiO/n-ZnO ultraviolet photodetector. Appl. Surf. Sci. 361, 157–161 (2016).

    CAS  Google Scholar 

  151. Wang, Z. N. et al. Piezo-phototronic UV/visible photosensing with optical-fiber-nanowire hybridized structures. Adv. Mater. 27, 1553–1560 (2015).

    CAS  Google Scholar 

  152. Rai, S. C. et al. Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array. ACS Nano 9, 6419–6427 (2015).

    CAS  Google Scholar 

  153. Wang, Z. et al. Optimizing performance of silicon-based p–n junction photodetectors by the piezo-phototronic effect. ACS Nano 8, 12866–12873 (2014).

    CAS  Google Scholar 

  154. Li, X. Y. et al. Enhancing light emission of ZnO-nanofilm/Si-micropillar heterostructure arrays by piezo-phototronic effect. Adv. Mater. 27, 4447–4453 (2015).

    CAS  Google Scholar 

  155. Wang, C. F. et al. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect. Nano Energy 14, 364–371 (2015).

    CAS  Google Scholar 

  156. Bao, R. R. et al. Flexible and controllable piezo-phototronic pressure mapping sensor matrix by ZnO NW/p-polymer LED array. Adv. Funct. Mater. 25, 2884–2891 (2015).

    CAS  Google Scholar 

  157. Du, C. H. et al. Piezo-phototronic effect controlled dual-channel visible light communication (PVLC) using InGaN/GaN multiquantum well nanopillars. Small 11, 6071–6077 (2015).

    CAS  Google Scholar 

  158. Guo, Z. et al. Large-scale horizontally aligned ZnO microrod arrays with controlled orientation, periodic distribution as building blocks for chip-in piezo-phototronic LEDs. Small 11, 438–445 (2015).

    CAS  Google Scholar 

  159. Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010).

    CAS  Google Scholar 

  160. Peng, M. Z. et al. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 9, 3143–3150 (2015).

    CAS  Google Scholar 

  161. Zhang, Y. et al. Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN–PT thin-film structures. Adv. Mater. 24, 1729–1735 (2012).

    Google Scholar 

  162. Chen, L., Wong, M. C., Bai, G. X., Jie, W. J. & Hao, J. H. White and green light emissions of flexible polymer composites under electric field and multiple strains. Nano Energy 14, 372–381 (2015).

    CAS  Google Scholar 

  163. Wang, X. et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 27, 2324–2331 (2015).

    CAS  Google Scholar 

  164. Wong, M. C., Chen, L., Tsang, M. K., Zhang, Y. & Hao, J. H. Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater. 27, 4488–4495 (2015).

    CAS  Google Scholar 

  165. Tsang, M.-K., Bai, G. & Hao, J. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 44, 1585–1607 (2015).

    CAS  Google Scholar 

  166. Wang, L. et al. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 10, 2636–2643 (2016).

    CAS  Google Scholar 

  167. Yu, R. et al. Piezo-phototronic boolean logic and computation using photon and strain dual-gated nanowire transistors. Adv. Mater. 27, 940–947 (2015).

    CAS  Google Scholar 

  168. Wen, X., Wu, W. & Wang, Z. L. Effective piezo-phototronic enhancement of solar cell performance by tuning material properties. Nano Energy 2, 1093–1100 (2013).

    CAS  Google Scholar 

  169. Zhang, Y. & Wang, Z. L. Theory of piezo-phototronics for light-emitting diodes. Adv. Mater. 24, 4712–4718 (2012).

    CAS  Google Scholar 

  170. Liu, Y. et al. Theoretical study of piezo-phototronic nano-LEDs. Adv. Mater. 26, 7209–7216 (2014).

    CAS  Google Scholar 

  171. Kim, S. Piezoelectric effects on the exciton dissociation rate in organic–inorganic hybrid systems. Integr. ferroelectr. 167, 69–77 (2015).

    CAS  Google Scholar 

  172. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    CAS  Google Scholar 

  173. Meric, I. et al. Graphene field-effect transistors based on boron-nitride dielectrics. Proc. IEEE 101, 1609–1619 (2013).

    CAS  Google Scholar 

  174. Zhu, H. et al. Al2O3 on black phosphorus by atomic layer deposition: an in situ interface study. ACS Appl. Mater. Interfaces 7, 13038–13043 (2015).

    CAS  Google Scholar 

  175. Kayyalha, M. & Chen, Y. P. in 72nd Device Research Conference 101–102 (California, 2014).

    Google Scholar 

  176. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2 . Nat. Nanotechnol. 10, 765–769 (2015).

    CAS  Google Scholar 

  177. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Google Scholar 

  178. Gao, Z., Ding, Y., Lin, S., Hao, Y. & Wang, Z. L. Dynamic fatigue studies of ZnO nanowires by in-situ transmission electron microscopy. Phys. Status Solidi RRL 3, 260–262 (2009).

    CAS  Google Scholar 

  179. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    CAS  Google Scholar 

  180. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    CAS  Google Scholar 

  181. Vosgueritchian, M., Lipomi, D. J. & Bao, Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421–428 (2012).

    CAS  Google Scholar 

  182. Yang, R., Qin, Y., Dai, L. & Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009).

    CAS  Google Scholar 

  183. Benight, S. J., Wang, C., Tok, J. B. H. & Bao, Z. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38, 1961–1977 (2013).

    CAS  Google Scholar 

  184. Bayerl, D. J. & Wang, X. Three-dimensional kelvin probe microscopy for characterizing in-plane piezoelectric potential of laterally deflected ZnO micro-/nanowires. Adv. Funct. Mater. 22, 652–660 (2012).

    CAS  Google Scholar 

  185. Geng, D., Pook, A. & Wang, X. Mapping of strain-piezopotential relationship along bent zinc oxide microwires. Nano Energy 2, 1225–1231 (2013).

    CAS  Google Scholar 

  186. Song K. et al. Correlative high-resolution mapping of strain and charge density in a strained piezoelectric multilayer. Adv. Mater. Interfaces 2 1400281 (2015).

    Google Scholar 

  187. Wang C. L. et al. Imaging and characterization of piezoelectric potential in a single bent ZnO microwire. Appl. Phys. Lett. 105 123115 (2014).

    Google Scholar 

  188. Hu, Y. F. et al. Temperature dependence of the piezotronic effect in ZnO nanowires. Nano Lett. 13, 5026–5032 (2013).

    CAS  Google Scholar 

  189. Li, H. et al. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 15, 2372–2379 (2015).

    CAS  Google Scholar 

  190. Yang, W. G. et al. Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2–BaTiO3 core–shell nanowire photoanodes. Nano Lett. 15, 7574–7580 (2015).

    CAS  Google Scholar 

  191. Blom, P. W. M., Wolf, R. M., Cillessen, J. F. M. & Krijn, M. Ferroelectric Schottky diode. Phys. Rev. Lett. 73, 2107–2110 (1994).

    CAS  Google Scholar 

  192. Kohlstedt, H., Pertsev, N. A., Contreras, J. R. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).

    Google Scholar 

  193. Tao, H. et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl Acad. Sci. USA 111, 17385–17389 (2014).

    CAS  Google Scholar 

  194. Tee, B. C. K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    CAS  Google Scholar 

  195. Wang, X. D. Piezotronics: a new field of strain-engineered functional semiconductor devices. Am. Ceram. Soc. Bull. 92, 18–23 (2013).

    CAS  Google Scholar 

  196. Rhoderick, E. H. & Williams, R. H. Metal–Semiconductor Contacts 2nd edn (Clarendon Press, 1988).

    Google Scholar 

  197. Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 24, 4632–4646 (2012).

    CAS  Google Scholar 

  198. Lu, S. N. et al. Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. Nanoscale 7, 4461–4467 (2015).

    CAS  Google Scholar 

  199. Xue, F. et al. Influence of external electric field on piezotronic effect in ZnO nanowires. Nano Res. 8, 2390–2399 (2015).

    CAS  Google Scholar 

  200. Lee, K. Y. et al. Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators. Nano Energy 8, 165–173 (2014).

    CAS  Google Scholar 

  201. Wang, C. H. et al. Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays. Small 10, 4718–4725 (2014).

    CAS  Google Scholar 

  202. Hu, Y., Lin, L., Zhang, Y. & Wang, Z. L. Replacing a battery by a nanogenerator with 20 V output. Adv. Mater. 24, 110–114 (2012).

    CAS  Google Scholar 

  203. Kang J. H., Liu W., Sarkar, D., Jena, D. & Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4 031005 (2014).

    Google Scholar 

  204. Feng, X. L., Zhang, Y. & Wang, Z. L. Theoretical study of piezotronic heterojunction. Sci. China: Technol. Sci. 56, 2615–2621 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support from the US Department of Energy, Office of Basic Energy Sciences (Award DE-FG02-07ER46394), the National Science Foundation (DMR-1505319), and the Thousand Talents program for a pioneer researcher and his innovation team, China. W.Z.W. is grateful to the College of Engineering and School of Industrial Engineering at Purdue University for the start-up support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Wang, Z. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat Rev Mater 1, 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/natrevmats.2016.31

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing