Abstract
Low-dimensional piezoelectric semiconductor nanomaterials, such as ZnO and GaN, have superior mechanical properties and can be integrated into flexible devices that can be subjected to large strain. More importantly, the coupling between piezoelectric polarization and semiconductor properties (for example, electronic transport and photoexcitation) in these materials gives rise to unprecedented device characteristics. This has increased research interest in the emerging fields of piezotronics and piezo-phototronics, which offer new means of manipulating charge-carrier transport, generation, recombination or separation in the controlled operation of flexible devices through the application of external mechanical stimuli. We review the recent progress in advancing our fundamental understanding and in realizing practical applications of piezotronics and piezo-phototronics, and provide an in-depth discussion of future research directions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
¥14,900 per year
only ¥1,242 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bonato, P. Wearable sensors and systems from enabling technology to clinical applications. IEEE Eng. Med. Biol. 29, 25–36 (2010).
Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).
Heng, W., Conrad, N., Wei, L. & Ye, P. D. in 2014 IEEE International Electron Devices Meeting 9.3.1–9.3.4 (San Francisco, 2014).
Muller, R. S., Kamins, T. I. & Chan, M. Device Electronics for Integrated Circuits 3rd edn (John Wiley & Sons, 2003).
Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).
Baugher, B. W. H., Churchill, H. O. H., Yang, Y. F. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).
Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9, 268–272 (2014).
Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Kingon, A. I. & Srinivasan, S. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications. Nat. Mater. 4, 233–237 (2005).
Ferren, R. A. Advances in polymeric piezoelectric transducers. Nature 350, 26–27 (1991).
Chen C. Q. & Zhu, J. Bending strength and flexibility of ZnO nanowires. Appl. Phys. Lett. 90 043105 (2007).
Li, P. et al. In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain. Nano Lett. 14, 480–485 (2014).
Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).
Wu, W. Z., Wen, X. N. & Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013).
Pan, C. F. et al. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 7, 752–758 (2013).
Wu, W. Z. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).
Qi J. J. et al. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 6 7430 (2015).
Li, H. X., Yu, Y. H., Starr, M. B., Li, Z. D. & Wang, X. D. Piezotronic-enhanced photoelectrochemical reactions in Ni(OH)2-decorated ZnO photoanodes. J. Phys. Chem. Lett. 6, 3410–3416 (2015).
Yang, S. Z. et al. The piezotronic effect of zinc oxide nanowires studied by in situ TEM. Adv. Mater. 24, 4676–4682 (2012).
Baraki R. et al. Varistor piezotronics: mechanically tuned conductivity in varistors. J. Appl. Phys. 118, 085703 (2015).
Wang, Z. L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010).
Zhou, J. et al. Flexible piezotronic strain sensor. Nano Lett. 8, 3035–3040 (2008).
Wu, W. Z., Wei, Y. G. & Wang, Z. L. Strain-gated piezotronic logic nanodevices. Adv. Mater. 22, 4711–4715 (2010).
Shi, J., Starr, M. B. & Wang, X. D. Band structure engineering at heterojunction interfaces via the piezotronic effect. Adv. Mater. 24, 4683–4691 (2012).
Wang, Z. L. Piezotronics and Piezo-Phototronics (Springer, 2013).
Hu, Y. F., Zhang, Y., Chang, Y. L., Snyder, R. L. & Wang, Z. L. Optimizing the power output of a ZnO photocell by piezopotential. ACS Nano 4, 4220–4224 (2010).
Hu, Y. F. et al. Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. Nano Lett. 12, 3851–3856 (2012).
Yang, Q. et al. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 13, 607–613 (2013).
Wu, W. Z., Pan, C. F., Zhang, Y., Wen, X. N. & Wang, Z. L. Piezotronics and piezo-phototronics — from single nanodevices to array of devices and then to integrated functional system. Nano Today 8, 619–642 (2013).
Wang, Z. L. & Wu, W. Z. Piezotronics and piezo-phototronics: fundamentals and applications. Natl Sci. Rev. 1, 62–90 (2014).
Kroemer, H. Nobel Lecture. Quasielectric fields and band offsets: teaching electrons new tricks. Rev. Modern Phys. 73, 783–793 (2001).
Lin, Y. F. & Jian, W. B. The impact of nanocontact on nanowire based nanoelectronics. Nano Lett. 8, 3146–3150 (2008).
Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).
Yajima T. et al. Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces. Nat. Commun. 6 6759 (2015).
Qian, F. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7, 701–706 (2008).
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nat. Nanotechnol. 8, 497–501 (2013).
Habisreutinger, S. N., Schmidt-Mende, L. & Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. Engl. 52, 7372–7408 (2013).
Luo, J. S. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).
Ozgur, U. et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).
Wang, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng R–Rep. 64, 33–71 (2009).
Joo, J., Chow, B. Y., Prakash, M., Boyden, E. S. & Jacobson, J. M. Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nat. Mater. 10, 596–601 (2011).
Wei, Y. et al. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Lett. 10, 3414–3419 (2010).
Zhou, J. et al. Piezoelectric-potential-control led polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 8, 3973–3977 (2008).
Fei, P. et al. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire. Nano Lett. 9, 3435–3439 (2009).
Xu, Z. et al. Lateral piezopotential-gated field-effect transistor of ZnO nanowires. Nano Energy 13, 233–239 (2015).
Wang, X. et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006).
Liu, W. H., Lee, M., Ding, L., Liu, J. & Wang, Z. L. Piezopotential gated nanowire–nanotube hybrid field-effect transistor. Nano Lett. 10, 3084–3089 (2010).
Sun, Q. et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 27, 3411–3417 (2015).
Chen, L. et al. Strain-gated field effect transistor of a MoS2–ZnO 2D–1D hybrid structure. ACS Nano 10, 1546–1551 (2015).
Han, W. H. et al. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS Nano 6, 3760–3766 (2012).
Zhou, Y. S. et al. Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices. ACS Nano 6, 6478–6482 (2012).
Yu, R., Wu, W., Ding, Y. & Wang, Z. L. GaN nanobelt-based strain-gated piezotronic logic devices and computation. ACS Nano 7, 6403–6409 (2013).
Zhu, R. & Yang, R. S. Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire. Nanotechnology 25, 345702 (2014).
Wu, W. Z. & Wang, Z. L. Piezotronic nanowire-based resistive switches as programmable electromechanical memories. Nano Lett. 11, 2779–2785 (2011).
Pradel, K. C. et al. Piezotronic effect in solution-grown p-type ZnO nanowires and films. Nano Lett. 13, 2647–2653 (2013).
Zhang, J. & Meguid, S. A. On the piezoelectric potential of gallium nitride nanotubes. Nano Energy 12, 322–330 (2015).
Yu, R. M. et al. Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics. Adv. Mater. 24, 3532–3537 (2012).
Liu, H. F., Liu, W., Chua, S. J. & Chi, D. Z. Fabricating high-quality GaN-based nanobelts by strain-controlled cracking of thin solid films for application in piezotronics. Nano Energy 1, 316–321 (2012).
Yu, R. M. et al. Temperature dependence of the piezophototronic effect in CdS nanowires. Adv. Funct. Mater. 25, 5277–5284 (2015).
Rai S. C. et al. Enhanced broad band photodetection through piezo-phototronic effect in CdSe/ZnTe core/shell nanowire array. Adv. Electron. Mater. 1 1400050 (2015).
Li, X. et al. Remarkable and crystal-structure-dependent piezoelectric and piezoresistive effects of InAs nanowires. Adv. Mater. 27, 2852–2858 (2015).
Ku, N. J., Huang, J. H., Wang, C. H., Fang, H. C. & Liu, C. P. Crystal face-dependent nanopiezotronics of an obliquely aligned InN nanorod array. Nano Lett. 12, 562–568 (2012).
Wu, J. M., Chen, K. H., Zhang, Y. & Wang, Z. L. A self-powered piezotronic strain sensor based on single ZnSnO3 microbelts. RSC Adv. 3, 25184–25189 (2013).
Wu, J. M. et al. Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. ACS Nano 6, 4369–4374 (2012).
Hou, T.-C. et al. Nanogenerator based on zinc blende CdTe micro/nanowires. Nano Energy 2, 387–393 (2013).
Chen, Y. Y., Wang, C. H., Chen, G. S., Li, Y. C. & Liu, C. P. Self-powered n-MgxZn1−xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect. Nano Energy 11, 533–539 (2015).
Wang, C. H., Lai, K. Y., Li, Y. C., Chen, Y. C. & Liu, C. P. Ultrasensitive thin-film-based AlxGa1−x N piezotronic strain sensors via alloying-enhanced piezoelectric potential. Adv. Mater. 27, 6289–6295 (2015).
Liao, X. Q. et al. Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nano layer. ACS Appl. Mater. Interfaces 7, 1602–1607 (2015).
Zhang, Z., Liao, Q. L., Yu, Y. H., Wang, X. D. & Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 9, 237–244 (2014).
Liao, Q. L., Liang, M. Y., Zhang, Z., Zhang, G. J. & Zhang, Y. Strain-modulation and service behavior of Au–MgO–ZnO ultraviolet photodetector by piezo-phototronic effect. Nano Res. 8, 3772–3779 (2015).
Pradel, K. C., Wu, W., Ding, Y. & Wang, Z. L. Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition. Nano Lett. 14, 6897–6905 (2014).
Lin, P. et al. Enhanced photoresponse of Cu2O/ZnO heterojunction with piezo-modulated interface engineering. Nano Res. 7, 860–868 (2014).
Jalali, N. et al. Improved performance of p–n junction-based ZnO nanogenerators through CuSCN-passivation of ZnO nanorods. J. Mater. Chem. A 2, 10945–10951 (2014).
Lin, P. et al. Self-powered UV photosensor based on PEDOT:PSS/ZnO micro/nanowire with strain-modulated photoresponse. ACS Appl. Mater. Interfaces 5, 3671–3676 (2013).
Yang, Y. et al. Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells. Nano Lett. 11, 4812–4817 (2011).
Araneo, R. & Falconi, C. Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion. Nanotechnology 24, 265707 (2013).
Zhang, R. Y. et al. Piezoelectric gated ZnO nanowire diode studied by in situ TEM probing. Nano Energy 3, 10–15 (2014).
Zhao, Z. F. et al. Piezotronic effect in polarity-controlled GaN nanowires. ACS Nano 9, 8578–8583 (2015).
Wang, X. et al. Temperature dependence of the piezotronic and piezophototronic effects in a-axis GaN nanobelts. Adv. Mater. 27, 8067–8074 (2015).
Yu, R. et al. Piezotronic effect in strain-gated transistor of a-axis GaN nanobelt. ACS Nano 9, 9822–9829 (2015).
Zhang, Z. et al. Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. Nanoscale 7, 1796–1801 (2015).
Wu, W., Pan, C., Zhang, Y., Wen, X. & Wang, Z. L. Piezotronics and piezo-phototronics — from single nanodevices to array of devices and then to integrated functional system. Nano Today 8, 619–642 (2013).
Xing, L. L. et al. Realizing room-temperature self-powered ethanol sensing of Au/ZnO nanowire arrays by coupling the piezotronics effect of ZnO and the catalysis of noble metal. Appl. Phys. Lett. 104, 013109 (2014).
Han, Y. et al. Piezotronic effect enhanced nanowire sensing of H2O2 released by cells. Nano Energy 13, 405–413 (2015).
Liao, Q. L. et al. Carbon fiber–ZnO nanowire hybrid structures for flexible and adaptable strain sensors. Nanoscale 5, 12350–12355 (2013).
Yu, R., Pan, C., Chen, J., Zhu, G. & Wang, Z. L. Enhanced performance of a ZnO nanowire-based self-powered glucose sensor by piezotronic effect. Adv. Funct. Mater. 23, 5868–5874 (2013).
Pan, C. F., Yu, R. M., Niu, S. M., Zhu, G. & Wang, Z. L. Piezotronic effect on the sensitivity and signal level of Schottky contacted proactive micro/nanowire nanosensors. ACS Nano 7, 1803–1810 (2013).
Yu, R. M., Pan, C. F. & Wang, Z. L. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energ Environ. Sci. 6, 494–499 (2013).
Niu, S. et al. Enhanced performance of flexible ZnO nanowire based room-temperature oxygen sensors by piezotronic effect. Adv. Mater. 25, 3701–3706 (2013).
Wang, N. et al. Piezotronic-effect enhanced drug metabolism and sensing on a single ZnO nanowire surface with the presence of human cytochrome P450. ACS Nano 9, 3159–3168 (2015).
Zhou, R. R., Hu, G. F., Yu, R. M., Pan, C. F. & Wang, Z. L. Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors. Nano Energy 12, 588–596 (2015).
Hu, G. F. et al. Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Res. 7, 1083–1091 (2014).
Duerloo, K. A. N., Ong, M. T. & Reed, E. J. Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012).
Ahmadpoor, F. & Sharma, P. Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale 7, 16555–16570 (2015).
Blonsky, M. N., Zhuang, H. L., Singh, A. K. & Hennig, R. G. Ab initio prediction of piezoelectricity in two-dimensional materials. ACS Nano 9, 9885–9891 (2015).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Castellanos-Gomez, A. et al. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 24, 772–775 (2012).
Manzeli, S., Allain, A., Ghadimi, A. & Kis, A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2 . Nano Lett. 15, 5330–5335 (2015).
Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626–3630 (2013).
van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).
Zhu, H. Y. et al. Observation of piezoelectricity in free-standing monolayer MoS2 . Nat. Nanotechnol. 10, 151–155 (2015).
Fei, R. X., Li, W. B., Li, J. & Yang, L. Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107, 173104 (2015).
Gomes L. C., Carvalho, A. & Neto, A. H. C. Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. Phys. Rev. B 92, 214103 (2015).
Li, W. B. & Li, J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Res. 8, 3796–3802 (2015).
Alyoruk, M. M., Aierken, Y., Cakir, D., Peeters, F. M. & Sevik, C. Promising piezoelectric performance of single layer transition-metal dichalcogenides and dioxides. J. Phys. Chem. C 119, 23231–23237 (2015).
Wen, X. N., Wu, W. Z., Ding, Y. & Wang, Z. L. Piezotronic effect in flexible thin-film based devices. Adv. Mater. 25, 3371–3379 (2013).
Xue, F. et al. Piezotronic effect on ZnO nanowire film based temperature sensor. ACS Appl. Mater. Interfaces 6, 5955–5961 (2014).
Baraki, R., Novak, N., Froemling, T., Granzow, T. & Roedel, J. Bulk ZnO as piezotronic pressure sensor. Appl. Phys. Lett. 105 111604 (2014).
Raidl, N., Supancic, P., Danzer, R. & Hofstaetter, M. Piezotronically modified double Schottky barriers in ZnO varistors. Adv. Mater. 27, 2031–2035 (2015).
Zhang, Y., Liu, Y. & Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 23, 3004–3013 (2011).
Araneo, R. et al. Current–voltage characteristics of ZnO nanowires under uniaxial loading. IEEE Trans. Nanotechnol. 13, 724–735 (2014).
Mitin, V. V., Kochelap, V. A. & Stroscio, M. A. Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications (Cambridge University Press, 2008).
Liu, W., Zhang, A., Zhang, Y. & Lin Wang, Z. First principle simulations of piezotronic transistors. Nano Energy 14, 355–363 (2015).
Jin, L. S. & Li, L. J. Quantum simulation of ZnO nanowire piezotronics. Nano Energy 15, 776–781 (2015).
Zhang, G. H., Zheng, Y. & Wang, B. Dissimilar-electrodes-induced asymmetric characteristic and diode effect of current transport in zinc oxide tunnel junctions. J. Appl. Phys. 114, 044111 (2013).
Zhang, G. H., Luo, X., Zheng, Y. & Wang, B. A. Giant piezoelectric resistance effect of nanoscale zinc oxide tunnel junctions: first principles simulations. Phys. Chem. Chem. Phys. 14, 7051–7058 (2012).
Zhu, J., Chen, W. J., Zhang, G. H. & Zheng, Y. Exponential size-dependent tunability of strain on the transport behavior in ZnO tunnel junctions: an ab initio study. Phys. Chem. Chem. Phys. 17, 25583–25592 (2015).
Rinaldi, A., Araneo, R., Celozzi, S., Pea, M. & Notargiacomo, A. The clash of mechanical and electrical size-effects in ZnO nanowires and a double power law approach to elastic strain engineering of piezoelectric and piezotronic devices. Adv. Mater. 26, 5976–5985 (2014).
Araneo, R. et al. Thermal-electric model for piezoelectric ZnO nanowires. Nanotechnology 26, 265402 (2015).
Hu, G. W. et al. Piezotronic transistors in nonlinear circuit: model and simulation. Sci. China: Technol. Sci. 58, 1348–1354 (2015).
Al-Zahrani, H. Y. S., Pal, J., Migliorato, M. A., Tse, G. & Yu, D. Piezoelectric field enhancement in III–V core–shell nanowires. Nano Energy 14, 382–391 (2015).
Liu, W., Zhang, A. H., Zhang, Y. & Wang, Z. L. Density functional studies on edge-contacted single-layer MoS2 piezotronic transistors. Appl. Phys. Lett. 107, 083105 (2015).
Bhattacharya, P. Semiconductor Optoelectronic Devices 2nd edn (Prentice Hall, 1997).
Zhang, Y., Yang, Y. & Wang, Z. L. Piezo-phototronics effect on nano/microwire solar cells. Energy Environ. Sci. 5, 6850–6856 (2012).
Liu, Y., Yang, Q., Zhang, Y., Yang, Z. Y. & Wang, Z. L. Nanowire piezo-phototronic photodetector: theory and experimental design. Adv. Mater. 24, 1410–1417 (2012).
Yang, Q., Wang, W. H., Xu, S. & Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett. 11, 4012–4017 (2011).
Hu, Y., Chang, Y., Fei, P., Snyder, R. L. & Wang, Z. L. Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. ACS Nano 4, 1234–1240 (2010).
Yang, Q. et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano 4, 6285–6291 (2010).
Boxberg, F., Sondergaard, N. & Xu, H. Q. Photovoltaics with piezoelectric core–shell nanowires. Nano Lett. 10, 1108–1112 (2010).
Pan, C. F. et al. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Lett. 12, 3302–3307 (2012).
Shi, J., Zhao, P. & Wang, X. D. Piezoelectric-polarization-enhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 25, 916–921 (2013).
Wang, Z. Z. et al. Enhancing sensitivity of force sensor based on a ZnO tetrapod by piezo-phototronic effect. Appl. Phys. Lett. 103, 143125 (2013).
Zhang, F., Ding, Y., Zhang, Y., Zhang, X. L. & Wang, Z. L. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO–CdS core–shell micro/nanowire. ACS Nano 6, 9229–9236 (2012).
Dong, L. et al. Piezo-phototronic effect of CdSe nanowires. Adv. Mater. 24, 5470–5475 (2012).
Shi, J. et al. Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. Nano Lett. 11, 5587–5593 (2011).
Starr, M. B., Shi, J. & Wang, X. D. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew. Chem. Int. Ed. Engl. 51, 5962–5966 (2012).
Liao, Z. M. et al. Strain induced exciton fine-structure splitting and shift in bent ZnO microwires. Sci. Rep. 2, 452 (2012).
Han, X. B. et al. Electronic and mechanical coupling in bent ZnO nanowires. Adv. Mater. 21, 4937–4941 (2009).
Wei, B. et al. Size-dependent bandgap modulation of ZnO nanowires by tensile strain. Nano Lett. 12, 4595–4599 (2012).
Dietrich, C. P. et al. Strain distribution in bent ZnO microwires. Appl. Phys. Lett. 98, 031105 (2011).
Fu, X. W., Liao, Z. M., Liu, R., Xu, J. & Yu, D. P. Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires. ACS Nano 7, 8891–8898 (2013).
Fu, X. W. et al. Tailoring exciton dynamics by elastic strain-gradient in semiconductors. Adv. Mater. 26, 2572–2579 (2014).
Xu, S. G., Guo, W. H., Du, S. W., Loy, M. M. T. & Wang, N. Piezotronic effects on the optical properties of ZnO nanowires. Nano Lett. 12, 5802–5807 (2012).
Lu, S. N. et al. Piezotronic interface engineering on ZnO/Au-based Schottky junction for enhanced photoresponse of a flexible self-powered UV detector. ACS Appl. Mater. Interfaces 6, 14116–14122 (2014).
Peng, M. et al. Flexible self-powered GaN ultraviolet photoswitch with piezo-phototronic effect enhanced on/off ratio. ACS Nano 10, 1572–1579 (2016).
Chen, J. X. et al. Strain-enhanced cable-type 3D UV photodetecting of ZnO nanowires on a Ni wire by coupling of piezotronics effect and pn junction. Opt. Express 22, 3661–3668 (2014).
Luo, Y. M. et al. Piezoelectric effect enhancing decay time of p-NiO/n-ZnO ultraviolet photodetector. Appl. Surf. Sci. 361, 157–161 (2016).
Wang, Z. N. et al. Piezo-phototronic UV/visible photosensing with optical-fiber-nanowire hybridized structures. Adv. Mater. 27, 1553–1560 (2015).
Rai, S. C. et al. Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array. ACS Nano 9, 6419–6427 (2015).
Wang, Z. et al. Optimizing performance of silicon-based p–n junction photodetectors by the piezo-phototronic effect. ACS Nano 8, 12866–12873 (2014).
Li, X. Y. et al. Enhancing light emission of ZnO-nanofilm/Si-micropillar heterostructure arrays by piezo-phototronic effect. Adv. Mater. 27, 4447–4453 (2015).
Wang, C. F. et al. Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect. Nano Energy 14, 364–371 (2015).
Bao, R. R. et al. Flexible and controllable piezo-phototronic pressure mapping sensor matrix by ZnO NW/p-polymer LED array. Adv. Funct. Mater. 25, 2884–2891 (2015).
Du, C. H. et al. Piezo-phototronic effect controlled dual-channel visible light communication (PVLC) using InGaN/GaN multiquantum well nanopillars. Small 11, 6071–6077 (2015).
Guo, Z. et al. Large-scale horizontally aligned ZnO microrod arrays with controlled orientation, periodic distribution as building blocks for chip-in piezo-phototronic LEDs. Small 11, 438–445 (2015).
Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010).
Peng, M. Z. et al. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. ACS Nano 9, 3143–3150 (2015).
Zhang, Y. et al. Piezo-phototronic effect-induced dual-mode light and ultrasound emissions from ZnS:Mn/PMN–PT thin-film structures. Adv. Mater. 24, 1729–1735 (2012).
Chen, L., Wong, M. C., Bai, G. X., Jie, W. J. & Hao, J. H. White and green light emissions of flexible polymer composites under electric field and multiple strains. Nano Energy 14, 372–381 (2015).
Wang, X. et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 27, 2324–2331 (2015).
Wong, M. C., Chen, L., Tsang, M. K., Zhang, Y. & Hao, J. H. Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect. Adv. Mater. 27, 4488–4495 (2015).
Tsang, M.-K., Bai, G. & Hao, J. Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem. Soc. Rev. 44, 1585–1607 (2015).
Wang, L. et al. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 10, 2636–2643 (2016).
Yu, R. et al. Piezo-phototronic boolean logic and computation using photon and strain dual-gated nanowire transistors. Adv. Mater. 27, 940–947 (2015).
Wen, X., Wu, W. & Wang, Z. L. Effective piezo-phototronic enhancement of solar cell performance by tuning material properties. Nano Energy 2, 1093–1100 (2013).
Zhang, Y. & Wang, Z. L. Theory of piezo-phototronics for light-emitting diodes. Adv. Mater. 24, 4712–4718 (2012).
Liu, Y. et al. Theoretical study of piezo-phototronic nano-LEDs. Adv. Mater. 26, 7209–7216 (2014).
Kim, S. Piezoelectric effects on the exciton dissociation rate in organic–inorganic hybrid systems. Integr. ferroelectr. 167, 69–77 (2015).
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
Meric, I. et al. Graphene field-effect transistors based on boron-nitride dielectrics. Proc. IEEE 101, 1609–1619 (2013).
Zhu, H. et al. Al2O3 on black phosphorus by atomic layer deposition: an in situ interface study. ACS Appl. Mater. Interfaces 7, 13038–13043 (2015).
Kayyalha, M. & Chen, Y. P. in 72nd Device Research Conference 101–102 (California, 2014).
Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2 . Nat. Nanotechnol. 10, 765–769 (2015).
Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
Gao, Z., Ding, Y., Lin, S., Hao, Y. & Wang, Z. L. Dynamic fatigue studies of ZnO nanowires by in-situ transmission electron microscopy. Phys. Status Solidi RRL 3, 260–262 (2009).
Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).
Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).
Vosgueritchian, M., Lipomi, D. J. & Bao, Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22, 421–428 (2012).
Yang, R., Qin, Y., Dai, L. & Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 4, 34–39 (2009).
Benight, S. J., Wang, C., Tok, J. B. H. & Bao, Z. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38, 1961–1977 (2013).
Bayerl, D. J. & Wang, X. Three-dimensional kelvin probe microscopy for characterizing in-plane piezoelectric potential of laterally deflected ZnO micro-/nanowires. Adv. Funct. Mater. 22, 652–660 (2012).
Geng, D., Pook, A. & Wang, X. Mapping of strain-piezopotential relationship along bent zinc oxide microwires. Nano Energy 2, 1225–1231 (2013).
Song K. et al. Correlative high-resolution mapping of strain and charge density in a strained piezoelectric multilayer. Adv. Mater. Interfaces 2 1400281 (2015).
Wang C. L. et al. Imaging and characterization of piezoelectric potential in a single bent ZnO microwire. Appl. Phys. Lett. 105 123115 (2014).
Hu, Y. F. et al. Temperature dependence of the piezotronic effect in ZnO nanowires. Nano Lett. 13, 5026–5032 (2013).
Li, H. et al. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 15, 2372–2379 (2015).
Yang, W. G. et al. Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2–BaTiO3 core–shell nanowire photoanodes. Nano Lett. 15, 7574–7580 (2015).
Blom, P. W. M., Wolf, R. M., Cillessen, J. F. M. & Krijn, M. Ferroelectric Schottky diode. Phys. Rev. Lett. 73, 2107–2110 (1994).
Kohlstedt, H., Pertsev, N. A., Contreras, J. R. & Waser, R. Theoretical current–voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).
Tao, H. et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl Acad. Sci. USA 111, 17385–17389 (2014).
Tee, B. C. K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).
Wang, X. D. Piezotronics: a new field of strain-engineered functional semiconductor devices. Am. Ceram. Soc. Bull. 92, 18–23 (2013).
Rhoderick, E. H. & Williams, R. H. Metal–Semiconductor Contacts 2nd edn (Clarendon Press, 1988).
Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 24, 4632–4646 (2012).
Lu, S. N. et al. Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. Nanoscale 7, 4461–4467 (2015).
Xue, F. et al. Influence of external electric field on piezotronic effect in ZnO nanowires. Nano Res. 8, 2390–2399 (2015).
Lee, K. Y. et al. Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators. Nano Energy 8, 165–173 (2014).
Wang, C. H. et al. Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays. Small 10, 4718–4725 (2014).
Hu, Y., Lin, L., Zhang, Y. & Wang, Z. L. Replacing a battery by a nanogenerator with 20 V output. Adv. Mater. 24, 110–114 (2012).
Kang J. H., Liu W., Sarkar, D., Jena, D. & Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4 031005 (2014).
Feng, X. L., Zhang, Y. & Wang, Z. L. Theoretical study of piezotronic heterojunction. Sci. China: Technol. Sci. 56, 2615–2621 (2013).
Acknowledgements
The authors are thankful for the support from the US Department of Energy, Office of Basic Energy Sciences (Award DE-FG02-07ER46394), the National Science Foundation (DMR-1505319), and the Thousand Talents program for a pioneer researcher and his innovation team, China. W.Z.W. is grateful to the College of Engineering and School of Industrial Engineering at Purdue University for the start-up support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Wu, W., Wang, Z. Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat Rev Mater 1, 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31
Published:
DOI: https://doi.org/10.1038/natrevmats.2016.31