Abstract
Although many functions have been ascribed to the cerebellum, the uniformity of its synaptic organization suggests that a single, characteristic computation may be common to all. Computer simulations are useful in examining this cerebellar computation, as they inherently address function at the level of information processing. Progress is facilitated by factors that make the cerebellum particularly amenable to such analysis. We review progress from two contrasting approaches. Top-down simulations begin with hypotheses about computational mechanisms and then ask how such mechanisms might operate within the cerebellum. Bottom-up simulations attempt to build a representation of the cerebellum that reflects known cellular and synaptic components as accurately as possible. We describe recent advances from these two approaches that are leading to an understanding of what information the cerebellum processes and how its neurons and synapses accomplish this task.
This is a preview of subscription content, access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Llinas, R. & Welsh, J. P. On the cerebellum and motor learning . Curr. Opin. Neurobiol. 3, 958– 965 (1993).
Courchesne, E. & Allen, G. Prediction and preparation, fundamental functions of the cerebellum. Learn. Mem. 4, 1–35 (1997).
Bower, J. M. Control of sensory data acquisition. Int. Rev. Neurobiol. 41, 489–513 (1997).
Bloedel, J. R. Functional heterogeneity with structural homogeneity: How does the cerebellum operate? Behav. Brain Sci. 15, 666– 678 (1992).
Thach, W. T., Goodkin, H. P. & Keating, J. G. The cerebellum and the adaptive coordination of movement . Annu. Rev. Neurosci. 15, 403– 442 (1992).
Ivry, R. B. The representation of temporal information in perception and motor control . Curr. Opin. Neurobiol. 6, 851– 857 (1996).
Schmahmann, J. D. International Review of Neurobiology. The Cerebellum and Cognition (Academic, San Diego, California, 1997).
Voogd, J. & Glickstein, M. The anatomy of the cerebellum . Trends Neurosci. 21, 370– 375 (1998).
Eccles, J. C., Ito, M. & Szentágothai, J. The Cerebellum as a Neuronal Machine (Springer, Berlin, New York, 1967).
Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984 ).
Llinas, R. in Handbook of Physiology Vol. II The Nervous System (ed. Brokks, V. B.) 831–976 (Am. Physiol. Soc., Bethesda, Maryland, 1981).
Raymond, J. L., Lisberger, S. G. & Mauk, M. D. The cerebellum: a neuronal learning machine? Science 272, 1126–1131 ( 1996).
Kim, J. J. & Thompson, R. F. Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci. 20, 177–181 ( 1997).
Mauk, M. D. Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues? Neuron 18, 343–346 (1997).
Sakurai, M. in The Olivocerebellar System in Motor Control (ed. Strata, P.) 221 –230 (Springer, New York, 1989).
Hirano, T. Depression and potentiation of the synaptic transmission between a granule cell and a Purkinje cell in rat cerebellar culture. Neurosci. Lett. 119, 141–144 ( 1990).
Racine, R. J., Wilson, D. A., Gingell, R. & Sunderland, D. Long-term potentiation in the interpositus and vestibular nuclei in the rat . Exp. Brain Res. 63, 158– 162 (1986).
Schneiderman, N., Fuentes, I. & Gormezano, I. Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science 136, 650–652 (1962).
Aitkin, L. M. & Boyd, J. Acoustic input to the lateral pontine nuclei. Hearing Res. 1, 67– 77 (1978).
Steinmetz, J. E., Lavond, D. G. & Thompson, R. F. Classical conditioning of the rabbit eyelid response with mossy fiber stimulation as the conditioned stimulus. Bull. Psychonom. Soc. 28, 245–248 (1985).
Steinmetz, J. E., Logan, C. G. & Thompson, R. F. in Cellular Mechanisms of Conditioning and Behavioral Plasticity (eds. Woody, D. L., Alkon, D. L. & McGaugh, J. L.) 143–148 (Plenum, New York, 1988).
Lewis, J. L., LoTurco, J. J. & Solomon, P. R. Lesions of the middle cerebellar peduncle disrupt acquisition and retention of the rabbit's classically conditioned nictitating membrane response. Behav. Neurosci. 101, 151–157 (1987).
Sears, L. L. & Steinmetz, J. E. Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Res. 545, 114– 122 (1991).
Mauk, M. D., Steinmetz, J. E. & Thompson, R. F. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proc. Natl. Acad. Sci. USA 83, 5349–5353 ( 1986).
McCormick, D. A., Steinmetz, J. E. & Thompson, R. F. Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Res. 359, 120–130 (1985).
McCormick, D. A., Clark, G. A., Lavond, D. G. & Thompson, R. F. Initial localization of the memory trace for a basic form of learning. Proc. Natl. Acad. Sci. USA 79, 2731– 2735 (1982).
McCormick, D. A. & Thompson, R. F. Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223, 296–299 ( 1984).
Schneiderman, N. & Gormezano, I. Conditioning of the nictitating membrane of the rabbit as a function of CS–US interval . J. Comp. Physiol. Psychol. 57, 188– 195 (1964).
Smith, M. C., Coleman, S. R. & Gormezano, I. Classical conditioning of the rabbit's nictitating membrane response at backward, simultaneous, and forward CS–US intervals. J. Comp. Physiol. Psychol. 69, 226– 231 (1969).
Mauk, M. D. & Ruiz, B. P. Learning-dependent timing of Pavlovian eyelid responses: differential conditioning using multiple interstimulus intervals . Behav. Neurosci. 106, 666– 681 (1992).
Millenson, J. R., Kehoe, E. J. & Gormezano, I. Classical conditioning of the rabbit's nictitating membrane response under fixed and mixed CS–US intervals. Learn. Motiv. 8, 351–366 ( 1977).
Moore, J. W. & Choi, J. S. Conditioned response timing and integration in the cerebellum. Learn. Mem. 4, 116–129 (1997).
Hesslow, G. & Ivarsson, M. Suppression of cerebellar Purkinje cells during conditioned responses in ferrets. Neuroreport 5, 649–652 (1994).
Moore, J. W., Desmond, J. E. & Berthier, N. E. Adaptively timed conditioned responses and the cerebellum: a neural network approach. Biol. Cybern. 62, 17–28 (1989).
Bullock, D., Fiala, J. C. & Grossberg, S. A neural model of timed response learning in the cerebellum . Neural Networks 7, 1101– 1114 (1994).
Fiala, J. C., Grossberg, S. & Bullock, D. Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J. Neurosci. 16, 3760 –3774 (1996).
Gluck, M. A., Reifsnider, E. S. & Thompson, R. F. in Neuroscience and Connectionist Theory (eds. Gluck, M. A. & Rumelhart, D. E.) 131–185 (Lawrence Erlbaum, Hillsdale, New Jersey, 1990).
Hull, C. L. Principles of Behavior, an Introduction to Behavior Theory (Appleton-Century-Crofts, New York, 1943).
Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M. & Mauk, M. D. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci. 20, 5516–5525 ( 2000).
Koch, C. & Segev, I. Single neurons and their role in information processing. Nat. Neurosci. 3, 1171– 1177 (2000).
Buonomano, D. V. & Mauk, M. D. Neural network model of the cerebellum: temporal discrimination and the timing of motor responses . Neural Comput. 6, 38– 55 (1994).
Aizenman, C. D. & Linden, D. J. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J. Neurophysiol. 82, 1697–1709 (1999).
Acknowledgements
Supported by MH57051 and MH46904.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Medina, J., Mauk, M. Computer simulation of cerebellar information processing. Nat Neurosci 3 (Suppl 11), 1205–1211 (2000). https://doi.org/10.1038/81486
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/81486
This article is cited by
-
Emergence of syntax and word prediction in an artificial neural circuit of the cerebellum
Nature Communications (2024)
-
Local synaptic inhibition mediates cerebellar granule cell pattern separation and enables learned sensorimotor associations
Nature Neuroscience (2024)
-
Activity map of a cortico-cerebellar loop underlying motor planning
Nature Neuroscience (2023)
-
Heterogeneous encoding of temporal stimuli in the cerebellar cortex
Nature Communications (2023)
-
Neural signals regulating motor synchronization in the primate deep cerebellar nuclei
Nature Communications (2022)