Abstract
Algorithmic complexity is a measure of randomness. In contrast to Shannon's entropy it is defined without a recourse to probabilities; for a binary string s it is given by the size, in bits, of the shortest computer program with the output s. I show that algorithmic complexity sets limits on the thermodynamic cost of computations, casts a new light on the limitations of Maxwell's demon and can be used to define distance between binary strings.
This is a preview of subscription content, access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go to natureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bennett, C. H. IBM J. Res. Dev. 17, 525–532 (1973).
Bennett, C. H. Int. J. theor. Phys. 21, 305–340 (1982).
Bennett, C. H. IBM J. Res. Dev. 32, 16–25 (1988).
Landauer, R. IBM J. Res. Dev. 3, 113–131 (1961).
Landauer, R. in Signal Processing (ed. Haykin, S.) 18–47 (Prentice-Hall, New York, 1989).
Bennett, C. H. & Landauer, R. Scient. Am. 253, 48–56 (1985).
Fredkin, E. & Toffoli, T. Int. J. theor. Phys. 21, 219–253 (1982).
Zurek, W. H. Phys. Rev. Lett. 53, 391–394 (1984).
Bennett, C. H. SIAM J. Comput. 18, 766–776 (1989).
Zurek, W. H. Phys. Rev. A (in the press).
Solomonoff, R. J. Inf. Control 7, 1–22 (1964).
Kolmogorov, A. N. Inf. Transmission 1, 3–11 (1965).
Kolmogorov, A. N. IEEE Trans Inf. Theory 14, 662–664 (1968).
Kolmogorov, A. N. Usp. mat. Nauk 25, 602–613 (1970).
Chaitin, G. J. J. Ass. Comput. Mach. 13, 547–569 (1966).
Chaitin, G. J. Scient. Am. 232(5), 47–52 (1975).
Chaitin, G. J. IBM J. Res. Dev. 21, 350–359 (1977).
Chaitin, G. J. Algorithmic Information Theory (Cambridge University Press, 1987).
Gacs, P. Soviet Math. Dokl. 15, 1477–1478 (1974).
Chaitin, G. J. J. Ass. Comput. Mach. 22, 245–268 (1975).
Levin, L. A. Soviet Math. Dokl 17, 522–526 (1976).
Stewart, I. Nature 332, 115–116 (1988).
Davies, M. Computability and Undecidability (McGraw-Hill, 1958).
Hofstadter, D. Gödel, Escher, Bach (Random House, New York, 1979).
Turing, A. M. Proc. Lond. math Soc. 42, 230–265 (1936).
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes Section 13.6 (Cambridge University Press, 1987).
Bennett, C. H. Scient. Am. 255(11), 108–117 (1987).
Szilard, L. Z. Phys. 53, 840–856 (1929).
Zurek, W. H. in Frontiers of Nonequilibrium Statistical Mechanics, (eds More, T. G. & Scully, M. O.) 151–161 (Plenum, New York, 1986).
Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).
Hamming, R. W. Coding and Information Theory (Prentice-Hall, Englewood Cliffs, 1987).
Lloyd, S. & Pagels, H. Ann. Phys. 188, 186–213 (1988).
(ed. Zurek, W. H.) Proc. Santa Fe Inst. Workshop “Complexity, Entropy, and Physics of Information” (Addison-Wesley, in the press).
Smoluchowski, M. in Vortgäge über die Kinetische Theorie der matene und der Elektnzität (Teubner, Leipzig, 1914).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Zurek, W. Thermodynamic cost of computation, algorithmic complexity and the information metric. Nature 341, 119–124 (1989). https://doi.org/10.1038/341119a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/341119a0