Abstract
Some results on Singer cyclic groups of GL(V) and their normalizers are given.
Similar content being viewed by others
References
J. W. P. Hirschfeld, Cyclic projectivities in PG (n; q), Teorie Combinatorie, Accad. Naz. dei Lincei, Vol. 1 (1973) pp. 201–211.
B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin (1967).
W. M. Kantor, Linear groups containing a Singer cycle, J. Algebra, Vol. 62 (1980) pp. 232–234.
G. M. Seitz, On the subgroup structure of classical groups, Comm. in Algebra, Vol. 10 (1982) pp. 875–885.
M. W. Short, The Primitive Soluble Permutation Groups of Degree Less Than 256, LNM, 1519, Springer-Verlag, Berlin (1992).
J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., Vol. 43 (1938) pp. 377–385.
T. Tsuzuku, Finite Groups and Finite Geometries, Cambridge University Press, Cambridge Tracts in Math., Cambridge (1982).
J. Ueberberg, Frobenius collineations in finite projective planes, Bull. Belg. Math. Soc. Simon Stevin, Vol. 4 (1997) pp. 473–492.
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. für Math. u. Phys., Vol. 3 (1892) pp. 265–284.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cossidente, A., de Resmini, M.J. Remarks on Singer Cyclic Groups and Their Normalizers. Designs, Codes and Cryptography 32, 97–102 (2004). https://doi.org/10.1023/B:DESI.0000029214.50635.17
Issue Date:
DOI: https://doi.org/10.1023/B:DESI.0000029214.50635.17