On Product MV-Algebras | Czechoslovak Mathematical Journal Skip to main content
Log in

On Product MV-Algebras

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper we apply the notion of the product MV-algebra in accordance with the definition given by B. Riečan. We investigate the convex embeddability of an MV-algebra into a product MV-algebra. We found sufficient conditions under which any two direct product decompositions of a product MV-algebra have isomorphic refinements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cattaneo and F. Lombardo: Independent axiomatization for MV –algebras. Tatra Mt. Math. Publ. 15 (1998), 227-232.

    Google Scholar 

  2. R. Cignoli, I. M. I. D'Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.

    Google Scholar 

  3. P. Conrad: Lattice Ordered Groups. Tulane University, 1971.

  4. A. Dvure£enskij and A. DiNola: Product MV –algebras. Multiple Valued Logic 6 (2001), 193-251.

    Google Scholar 

  5. A. Dvurečenskij and B. Riečan: Weakly divisible MV-algebras and product. J. Math. Anal. Appl. 234 (1999), 208-222.

    Google Scholar 

  6. L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1964.

    Google Scholar 

  7. D. Gluschankof: Cyclic ordered groups and MV –algebras. Czechoslovak Math. J. 43(118) (1993), 249-263.

    Google Scholar 

  8. J. Jakubík: Direct product decompositions of MV –algebras. Czechoslovak Math. J. 44(119) (1994), 725-739.

    Google Scholar 

  9. J. Jakubík: On complete MV –algebras. Czechoslovak Math. J. 45(120) (1995), 473-480.

    Google Scholar 

  10. D. Mundici: Interpretation of AFC*-algebra in Lukasiewics sentential calculus. J. Funct. Anal. 65 (1986), 15-63.

    Google Scholar 

  11. B. Riečan: On the product MV –algebras. Tatra Mt. Math. Publ. 16 (1999), 143-149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakubík, J. On Product MV-Algebras. Czechoslovak Mathematical Journal 52, 797–810 (2002). https://doi.org/10.1023/B:CMAJ.0000027234.36585.2c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CMAJ.0000027234.36585.2c

Navigation