Abstract
In this paper we apply the notion of the product MV-algebra in accordance with the definition given by B. Riečan. We investigate the convex embeddability of an MV-algebra into a product MV-algebra. We found sufficient conditions under which any two direct product decompositions of a product MV-algebra have isomorphic refinements.
Similar content being viewed by others
References
G. Cattaneo and F. Lombardo: Independent axiomatization for MV –algebras. Tatra Mt. Math. Publ. 15 (1998), 227-232.
R. Cignoli, I. M. I. D'Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000.
P. Conrad: Lattice Ordered Groups. Tulane University, 1971.
A. Dvure£enskij and A. DiNola: Product MV –algebras. Multiple Valued Logic 6 (2001), 193-251.
A. Dvurečenskij and B. Riečan: Weakly divisible MV-algebras and product. J. Math. Anal. Appl. 234 (1999), 208-222.
L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1964.
D. Gluschankof: Cyclic ordered groups and MV –algebras. Czechoslovak Math. J. 43(118) (1993), 249-263.
J. Jakubík: Direct product decompositions of MV –algebras. Czechoslovak Math. J. 44(119) (1994), 725-739.
J. Jakubík: On complete MV –algebras. Czechoslovak Math. J. 45(120) (1995), 473-480.
D. Mundici: Interpretation of AFC*-algebra in Lukasiewics sentential calculus. J. Funct. Anal. 65 (1986), 15-63.
B. Riečan: On the product MV –algebras. Tatra Mt. Math. Publ. 16 (1999), 143-149.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jakubík, J. On Product MV-Algebras. Czechoslovak Mathematical Journal 52, 797–810 (2002). https://doi.org/10.1023/B:CMAJ.0000027234.36585.2c
Issue Date:
DOI: https://doi.org/10.1023/B:CMAJ.0000027234.36585.2c