Tube Methods for BV Regularization | Journal of Mathematical Imaging and Vision Skip to main content
Log in

Tube Methods for BV Regularization

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper tube methods for reconstructing discontinuous data from noisy and blurred observation data are considered. It is shown that discrete bounded variation (BV)-regularization (commonly used in inverse problems and image processing) and the taut-string algorithm (commonly used in statistics) select reconstructions in a tube. A version of the taut-string algorithm applicable for higher dimensional data is proposed. This formulation results in a bilateral contact problem which can be solved very efficiently using an active set strategy. As a by-product it is shown that the Lagrange multiplier of the active set strategy is an efficient parameter for edge detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Acar and C.R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems,” Inverse Probl., Vol. 10, pp. 1217-1229, 1994.

    Article  Google Scholar 

  2. L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, The Clarendon Press, Oxford University Press: New York, 2000.

    Google Scholar 

  3. L. Ambrosio and V.M. Tortorelli, “On the approximation of free discontinuity problems,” Boll. Un. Mat. Ital. B (7), Vol. 6, pp. 105-123, 1992.

    Google Scholar 

  4. A. Chambolle and P.L. Lions, “Image recovery via total variation minimization and related problems,” Numer. Math., Vol. 76, pp. 167-188, 1997.

    Article  Google Scholar 

  5. T. Chan, G. Golub, and P. Mulet, “A nonlinear primal-dual method for total variation-based image restoration,” SIAM J. Sci. Comput., Vol. 20, No. 6, pp. 1964-1977, 1999.

    Article  Google Scholar 

  6. P.L. Davies and A. Kovac, “Local extremes, runs, strings and multiresolution,” Ann. Statist., Vol. 29, pp. 1-65, 2001. With discussion and rejoinder by the authors.

    Article  Google Scholar 

  7. D.C. Dobson and C.R. Vogel, “Convergence of an iterative method for total variation denoising,” SIAM J. Num. Anal., Vol. 34, pp. 1779-1791, 1997.

    Article  Google Scholar 

  8. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC-Press: Boca Raton, 1992.

    Google Scholar 

  9. D. Geman and C. Yang, “Nonlinear image recovery with half quadratic regularization,” IEEE Transactions on Image Processing, Vol. 4, pp. 932-945, 1995.

    Article  Google Scholar 

  10. C. Großmann and H.-G. Roos, Numerik Partieller Differentialgleichungen, Teubner, Stuttgart, 1992.

    Google Scholar 

  11. M. Hintermüller, K. Ito, and K. Kunisch, “The primal-dual active set strategy as a semi-smooth Newton method,” SIAM J. Optimization, to appear.

  12. K. Ito and K. Kunisch, “Lagrangian formulation of nonsmooth convex optimization in Hilbert spaces,” in Control of Partial Differential Equations and Applications, Lect. Notes Pure Appl. Math. 174, E. Casas (Ed.), New York, 1996, pp. 107-117, Proceedings of the IFIP TC7.

  13. K. Ito and K. Kunisch, “An active set strategy based on the augmented Lagrangian formulation for image restoration,” M2AN Math. Model. Numer. Anal., Vol. 33, pp. 1-21, 1999.

    Article  Google Scholar 

  14. K. Ito and K. Kunisch, “Restoration of edge-flat-grey scales,” Inverse Problems, Vol. 65, pp. 273-298, 2000.

    Google Scholar 

  15. S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, San Diego, CA, 1999.

    Google Scholar 

  16. E. Mammen and S. van de Geer, “Locally adaptive regression splines,” Ann. Statist., Vol. 25, pp. 387-413, 1997.

    Article  Google Scholar 

  17. D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Commun. Pure Appl. Math., Vol. 42, pp. 577-685, 1989.

    Google Scholar 

  18. M.Z. Nashed and O. Scherzer, “Least squares and bounded variation regularization with nondifferentiable functional,” Num. Funct. Anal. and Optimiz., Vol. 19, pp. 873-901, 1998.

    Google Scholar 

  19. M. Nikolova, “Local strong homogeneity of a regularized estimator,” SIAM J. Appl. Math., Vol. 61, pp. 633-658, 2000.

    Article  Google Scholar 

  20. O. Scherzer and J. Weickert, “Relations between regularization and diffusion filtering,” J. Math. Imag.Vision, Vol. 12, pp. 43-63, 2000.

    Article  Google Scholar 

  21. C. Vogel, “A multigrid method for total variation-based image denoising,” in Computation and Control IV, K. Bowers and J. Lund (Eds.), Vol. 20. Birkhäuser, 1995. Progess in Systems and Control Theory.

  22. C.R.Vogel and M.E. Oman, “Iterative methods for total variation denoising,” SIAM J. Sci. Comput., Vol. 17, pp. 227-238, 1996.

    Google Scholar 

  23. J. Weickert, Anistropic Diffusion in Image Processing, Teubner, Stuttgart, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinterberger, W., Hintermüller, M., Kunisch, K. et al. Tube Methods for BV Regularization. Journal of Mathematical Imaging and Vision 19, 219–235 (2003). https://doi.org/10.1023/A:1026276804745

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026276804745