Abstract
A multi-linear (ML) and artificial neural network (ANN) approaches have been used to derive quantitativestructure-activity relationships (QSAR) between the genotoxicity (mutagenicity) and molecular structure of compounds by using large initial pools of descriptors. All derived models involve descriptors that describe possible structural factors influencing the mutagenicbehavior of organic compounds. Different quantum chemical characteristics of compounds have been successfully used together with conventional molecular descriptors. The connection between descriptors represented in the models and the mutagenic behavior ofcompounds is also discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agatonovic-Kustrin, S., Beresford, R. & Yusof A. P. M. (2001). Theoretically Derived Molecular Descriptors Important in Human Intestinal Absorption. J. Pharm. Biomed. Anal. 25: 227–237.
Agatonovic-Kustrin, S., Ling L. H., Tham, S. Y. & Alany, R. G. (2002). Molecular Descriptors that Influence the Amount of Drugs Transfer into Human Breast Milk. J. Pharm. Biomed. Anal. 29: 103–119.
Ames, B. N. (1979). Identifying Environmental Chemicals Causing Mutations and Cancer. Science 204: 587–593.
Baker, J. (1986). An Algorithm for the Location of Transition States. J. Comput. Chem. 7: 385–395.
Basak, S. C., Niemi, G. J. & Veith, G. D. (1990). Optimal Characterization of Structure for Prediction of Properties. J. Math. Chem. 4: 185–205.
Benigni, R. & Giuliani, A. (1991). Mathematical Models for Exploring Different Aspects of Genotoxicity and Carcinogenic Databases. Environ. Health Perspect. 96: 81–84.
Benigni, R. & Giuliani, A. (1996). Quantitative Structure-Activity Relationship (QSAR) Studies of Mutagens and Carcinogens. Med. Res. Rev. 16: 267–284.
Benigni, R. & Richard, A. M. (1998). Quantitative Structure-Based Modelling Applied to Characterization and Prediction of Chemical Toxicity. METHODS 14: 264–276.
Benigni, R., Giuliani, A., Franke, R. & Gruska, A. (2000). Quantitative Structure-Activity Relationships of Mutagenic and Carcinogenic Aromatic Amines. Chem. Rev. 100: 3697–3714.
Bodor, N. & Buchwald, P. (1997). A Molecular Size Based Approach to Estimate Partition Properties for Organic Solutes. J. Phys. Chem. 101: 3404–3412.
Bodor, N., Harget, A. & Huang, M.-J. (1991) Neural Network Studies. 1. Estimation of the Aqueous Solubility of Organic Compounds. J. Am. Chem. Soc. 28: 849–857.
Brinn, M. W., Payne, M. P. & Walsh, P. T. (1993). Neural Network Prediction of Mutagenicity Using Structure-Property Relationships. Chem. Eng. Res. Des. 71: 337–339.
Buchwald, P. & Bodor, N. (1998). Octanol-Water Partition: Searching for Predictive Models. Curr. Med. Chem. 5: 353–380.
Cornin, M. T. D. & Dearden, J. C. (1995). QSAR in Toxicology. 3. Prediction of Chronic Toxicities. Quant. Struct.-Act. Relat. 14: 329–334.
Debnath, A. K., Compadre, R. L. L., Debnath, D., Shusterman, A. J. & Hansch, C. (1991). Structure-Activity Relationship of Mutagenic Aromatic and Heteroaromatic Nitro Compounds. Correlation with Molecular Orbital Energies and Hydrophobicity. J. Med. Chem. 34: 786–797.
Debnath, A. K., Lopez de Compadre, R. L., Shusterman, A. J. & Hansch, C. (1992). Quantitative Structure-Activity Relationship Investigation of the Role of Hydrophobicity in Regulating Mutagenicity in the Ames Test: 2. Mutagenicity of Aromatic and Heteroaromatic Nitro Compounds in Salmonella Typhimurium TA100. Environ. Mol. Mutagen. 19: 53–70.
Dednath, A. K., Hanch, C., Kim, K. H. & Martin, Y. C. (1993). Mechanistic Interpretation of the Genotoxicity of Nitrofurans (Antibacterial Agents) Using Quantitativ Structure-Activity Relationships and Comparative Molecular Field Analysis. J. Med. Chem. 36: 1007–1016.
Debnath, A. K., Shusterman, A. J., Lopez de Compadre, R. L. & Hansch, C. (1994). The Importance of the Hydrophobic Interaction in the Mutagenicity of Organic Compounds. Mut. Res. 305: 63–73.
Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. & Stewart, J. J. P. (1985). AM1: A New General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 107: 3902–3909.
Draper, N. R. & Smith, H. (1981). Applied Regression Analysis. New York: Wiley.
Edward, J. T. (1998). Calculation of Octanol-Water Partition Coefficients of Organic Solutes from Their Molecular Volumes. Can. J. Chem. 76: 1294–1303.
Enslein, K., Gombar, V. K. & Blake, B.W. (1994). Use of SAR in Computer-Assisted Prediction of Carcinogenicity and Mutagenicity of Chemicals by the TOPCAT Program. Mut. Res. 305: 47–61.
Gao, H., Lajiness, M. S. & Van Drie J. (2002). Enhancement of Binary QSAR Analysis by a GA-Based Variable Selection Method. J. Mol. Graph. & Mod 20: 259–268.
Garg, A. Bhat, K. L. & Bock, C. W. (2002) Mutagenicity of Aminoazobenzene Dyes and Related Structures: A QSAR/QSAR Investigation. Dyes and Pigments 55: 35–52.
Gini, G., Lorenzini, M., Benfenati, E., Grasso, P. & Bruschi, M. (1999). Predictive Carcinogenicity: A Model for Aromatic Compounds, with Nitrogen-Containing Substituents, Based on Molecular Descriptors Using an Artificial Neural Network. J. Chem. Inf. Comput. Sci. 39: 1076–1080.
Goldberg, D. E. (1989). Genetic Algorithm in Search, Optimization, and Machine Learning. Reading, MA: Addison-Wesley.
Goll, E. S. & Jurs, P. C. (1999). Prediction of the Normal Boiling Points of Organic Compounds from Molecular Structures with a Computational Neural Network Model. J. Chem. Inf. Comput. Sci. 39: 974–983.
Hansch, C. & Fujita, T. (1964). ρ-σ-π analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 86: 1616–1626.
Hansch, C. & Leo, A. (1995). Exploring QSAR, Fundamentals and Applications in Chemistry and Biology, Chapters 6 & 11. Washington, DC: ACS.
Hatch, F. T. & Colvin, M. E. (1997). Quantitative Structure-Activity (QSAR) Relationships of Mutagenic Aromatic and Heterocyclic Amines. Mut. Res. 376: 87–96.
Hooberman, B. H., Chakraborty, P. K. & Sinsheimer, J. E. (1993). Quantitative Structure-Activity Relationships for the Mutagenicity of Propylene Oxides with Salmonella. Mut. Res. 299: 85–93.
Huuskonen, J. J., Livingstone D. J. & Villa, A. E. P. (2000). Neural Network Modeling for Estimation of Partition Coefficients Based on Atom-Type Electrotopological State Indices J. Chem. Inf. Comp. Sci. 38: 947–955.
Karelson, M., Lobanov, V. S. & Katritzky, A. R. (1996). Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev. 96: 1027–1043.
Karelson, M. (2000a). Molecular Descriptors in QSAR/QSPR, 430. New York: John Wiley & Sons.
Karelson, M., Sild, S. & Maran, U. (2000b). Non-Linear QSAR Treatment of Genotoxicity. Mol. Simulat. 24: 229–242.
Katritzky, A. R., Lobanov, V. S. & Karelson, M. (1994) CODESSA: Reference Manual (version 2.0). Gainesville, Florida.
Katritzky, A. R., Lobanov, V. S. & Karelson, M. (1995). QSPR: The Correlation and Quantitative Prediction of Chemical and Physical Properties from Structure. Chem. Soc. Rev. 24: 279–287.
Katritzky, A. R., Mu, L., Lobanov, V. S. & Karelson, M. (1996). Correlation of Boiling Points with Molecular Structure. 1. A Training Set of 298 Diverse Organics and Test Set of 9 Simple Inorganics. J. Phys. Chem. 100: 10400–10407.
Kier, L. B. & Hall, L. H. (1976). Molecular Connectivity in Chemistry and Drug Reasearch. New York: Academic Press Inc.
Kier, L. B. (1980a). Use of Molecular Negentropy to Encode Structure Governing Biological Activity. J. Pharm. Sci. 69: 807–810.
Kier, L. B. (1990). Indexes ofMolecular Shape from Chemical Graphs. In Rouvray, D. H. (ed.) Computational Chemical Graph Theory, 152–174. New York: Nova Science Publishers.
Klaassen, C. D. (ed.) (1995). Casarett and Doull's Toxicology: The Basic Science of Poisons, 5th ed.,, Chapers 2, 8 and 9. New York: McGraw-Hill.
Klopman, G. & Rosenkranz, H. S. (1994). Approaches to SAR in Carcinogenesis and Mutagenesis. Prediction of Carcinogenicicty/Mutagenicity Using MULTI-CASE. Mut. Res. 305: 33–46.
Kovalishyn, V. V., Tetko, I. V., Luik, A. I., Kholodovych, V. V., Villa, A. E. P. & Livingstone D. J. (1998). Neural Network Studies. 3. Variable Selection in the Cascade-Correlation Learning Architecture. J. Chem. Inf. Comp. Sci. 38: 651–659.
Kurtz, H. A., Stewart, J. J. P. & Dieter, K. M. (1990). Calculation of the Nonlinear Optical Properties of Molecules. J. Comput. Chem. 11: 82–87.
Maran, U., Karleson, M. & Katritzky, A. R. (1999). A Comprehensive QSAR Treatment of the Genotoxicity of Heteroaromatic Amines. Quant. Struct.-Act. Relat. 18: 3–10.
McCann, J. & Ames, B. N. (1977). The Salmonella/Microsome Mutagenicity Test: Predictive Value of Animal Carcinogenicity. In Hiatt, H. H., Watson, J. D. & Winsten, J. A. (eds.) Origins of Human Cancer: Book C, Human Risk Assessment, 1431–1450. Cold Spring Harbor Laboratory.
Miller, J. A. & Miller, E. C. (1997). Ultimate Chemical Carcinogens as Reactive Mutagenic Electrophiles. In Hiatt, W. & Winstein (eds.) Origins of Human Concerns, 605–627. Cold Spring Harbor, NY: Laboratory Press.
Mitchell, B E. & Jurs, P. C. (1997) Prediction of Autoignition Temperatures of Organic Compounds from Molecular Structure. J. Chem. Inf. Comput. Sci. 37: 538–547.
Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill.
Patankar, S. J. & Jurs, P. C. (2000). Prediction of IC50 Values for ACAT Inhibitors from Molecular Structure. J. Chem. Inf. Comput. Sci. 40: 706–723.
PCMODEL (1992). Molecular Modelling Package. Bloomington: Serena Software.
Poso, A., Wright, A. & Gynther, J. (1995). An Empirical and Theoretical Study on Mechanism of Mutagenic Activity of Hydrazine Compounds. Mut. Res. 332: 63–71.
Pullman, A. & Pullman, B. (1955). Electronic Structure and Carcinogenic Cctivity of Some Aromatic Molecules. Adv. Cancer Res. 3: 117–169.
Richard, A. M. (1994). Application of SAR Methods to Non-congeneric Data Bases Associated With Carcinogenicity and Mutagenicity: Issues and Approaches. Mut. Res. 305: 73–97.
Rogers, D. & Hopfinger, A. J. (1994). Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships. J. Chem. Inf. Comput. Sci. 34: 854–866.
Roy, A. B., Basak, S. C., Harriss, D. K. & Magnuson, V. R. (1983). Neighborhood Complexities and Symmetry of Chemical Graphs and Their Biological Applications. In Avula, X. J. R. Kalman, R. E. Liapis, A. I. & Rodin, E. Y. (eds.) Mathematical Modelling in Science and Techiology, 745–750. New York: Pergamon Press.
Sild, S. & Karelson, M. (2002). A General QSPR Treatment for Dielectric Constants of Organic Compounds. J. Chem. Inf. Comp. Sci. 42: 360–367.
So, S.-S., van Helden, S. P., van Geerestein, V. J. & Karplus, M. (2000). Quantitative Structure-Activity Relationship Studies of Progesterone Receptor Binding Steroids. J. Chem. Inf. Comput. Sci. 40: 762–772.
Soderman, J. V. (1982). CRC Handbook of Identified Carcinogens and Noncarcinogens: Carcinogenicity and Mutagenicity Database. Boca Raton, Florida: CRC Press.
Somol, P. Pudil, Novovièová, J. & Paclík, P. (1999). Adaptive Floating Search Methods in Feature Selection. Pat. Rec. Lett. 20: 1157–1163.
Stanton, D. T. & Jurs, P. C. (1990). Development and Use of Charged Partial Surface Area Structural Descriptors in Computer-Assisted Quantitative Structure-Property Realtionship Studies. Anal. Chem. 62: 2323–2329.
Stewart, J. J. P. (1989). MOPAC Program Package. QCPE, No. 455.
Stouch, T. R. & Jurs, P. C. (1985). Computer-Assisted Studies of Molecular Structure and Genotoxic Activity by Pattern Recognition Techniques. Environ. Health Perspect. 61: 329–345.
Tetko, I. V., Villa, A. E. P. & Livingstone, D. J. (1996). Neural Network Studies. 2. Variable Selection. J. Chem. Inf. Comp. Sci. 36: 794–803.
Tuppurainen, K. (1994). QSAR Approach to Molecular Mutagenicity. A Survey and Case Study: MX Compounds. J. Mol. Struct. (Theochem) 306: 49–56.
Viswanadhan, V. N., Mueller, G. A., Basak, S. C. & Weinstein, J. N. (2001). Comparison of a Neural Net-Based QSAR Algorithm (PCANN) with Hologram-and Multiple Linear Regression-Based QSAR Approaches: Application to 1,4-dihydropyridine Based Calcium Channel Antagonists. J. Chem. Inf. Comp. Sci. 41: 505–511.
Vračcko, M. (1997). A Study of Structure-Carcinogenic Potency Relationship with Artificial Neural Networks. The Using of Descriptors Related to Geometrical and Electronic Structures. J. Chem. Inf. Comput. Sci. 37: 1037–1043.
Walczak, B. & Wegscheider, W. (1993). Non-linear Modeling of Chemical Data by Combinations of Linear and Neural Net Methods. Anal. Chim. Acta 283: 508–517.
Weast, R. C. (ed.) (1974). Handbook of Chemistry and Physics, F-112. Cleveland OH: CRC Press.
Zefirov, N. S., Kirpichenok, M. A., Izmailov, F. F. & Trofimov, M. I. (1987). Scheme for the Calculation of the Electronegativities of Atoms in a Molecule in the Framework of Sanderson's Principle. Dokl. Akad. Nauk SSSR 296: 883–887.
Zupan, J. & Gasteiger, J. (1993). Neural Networks for Chemists: An Introduction. VCH.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Maran, U., Slid, S. QSAR Modeling of Genotoxicity on Non-congeneric Sets of Organic Compounds. Artificial Intelligence Review 20, 13–38 (2003). https://doi.org/10.1023/A:1026084514236
Issue Date:
DOI: https://doi.org/10.1023/A:1026084514236