A Classification of Quasi-Newton Methods | Numerical Algorithms Skip to main content
Log in

A Classification of Quasi-Newton Methods

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider quasi-Newton methods of the form x k+1=x k k f(x k ), k=0,1,. . . , for the solution of the system of nonlinear equations f(x)=0. We present a classification of such methods based on different structures for the matrix Λ k and various criteria for its computation, issued from three different formulae. Many known methods can be put into this framework and new methods are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Altman, On the approximate solutions of operator equations in Hilbert space, Bull. Pol. Acad. Sci. Math. 5 (1957) 605–609.

    Google Scholar 

  2. D. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Comput.Mach. 12 (1965) 547–560.

    Google Scholar 

  3. J.G.P. Barnes, An algorithm for solving nonlinear equations based on the secant method, Computer J. 8 (1965) 66–72.

    Google Scholar 

  4. J. Barzilai and J.M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988) 141–148.

    Google Scholar 

  5. C. Brezinski, Application de l'ε-algorithme à la résolution des systèmes non linéaires, C. R. Acad. Sci. Paris A 271 (1970) 1174–1177.

    Google Scholar 

  6. C. Brezinski, Numerical stability of a quadratic method for solving systems of nonlinear equations, Computing 14 (1975) 205–211.

    Google Scholar 

  7. C. Brezinski, Recursive interpolation, extrapolation and projection, J. Comput. Appl. Math. 9 (1983) 369–376.

    Google Scholar 

  8. C. Brezinski, Projection Methods for Systems of Equations (North-Holland, Amsterdam, 1997).

    Google Scholar 

  9. C. Brezinski, Vector sequence transformations: Methodology and applications to linear systems, J. Comput. Appl. Math. 98 (1998) 149–175.

    Google Scholar 

  10. C. Brezinski, Dynamical systems and sequence transformations, J. Phys. A: Math. Gen. 34 (2001) 10659–10669.

    Google Scholar 

  11. C. Brezinski, Biorthogonal vector sequence transformations and Padé approximation of vector series, Appl. Numer. Math. 41 (2002) 437–442.

    Google Scholar 

  12. C. Brezinski and J.-P. Chehab, Nonlinear hybrid procedures and fixed point iterations, Numer. Funct. Anal. Optimization 19 (1998) 465–487.

    Google Scholar 

  13. C. Brezinski and J.-P. Chehab, Multiparameter iterative schemes for the solution of systems of linear and nonlinear equations, SIAM J. Sci. Comput. 20 (1999) 2140–2159.

    Google Scholar 

  14. C. Brezinski and M. Redivo-Zaglia, Extrapolation Methods. Theory and Practice (North-Holland, Amsterdam, 1991).

    Google Scholar 

  15. C. Brezinski and H. Sadok, Vector sequence transformations and fixed point methods, in: Numerical Methods in Laminar and Turbulent Flows, Vol. I, eds. C. Taylor et al. (Pineridge Press, Swansea, 1987) pp. 3–11.

    Google Scholar 

  16. C.G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp. 19 (1965) 577–593.

    Google Scholar 

  17. J.-P. Chehab, A nonlinear adaptative multiresolution method in finite differences with incremental unknowns, Modél. Math. Anal. Numér. 29 (1995) 451–475.

    Google Scholar 

  18. W. Davidon, Variable metric methods for minimization, A.E.C. Res. and Develop. Report ANL-5990, Argonne National Laboratory, Argonne, IL, USA (1959).

    Google Scholar 

  19. J.E. Dennis and J.J. Moré, A characterization of superlinear convergence and its applications to quasi Newton methods, Math. Comp. 28 (1974) 549–560.

    Google Scholar 

  20. J.E. Dennis, Jr. and R.B. Schnabel, Numerical Methods for Unsconstrained Optimization and Nonlinear Equations (Prentice-Hall, Englewood Cliffs, NJ, 1983).

    Google Scholar 

  21. R. Fletcher and M. Powell, A rapidly convergent descent method for minimization, Comput. J. 6 (1963) 163–168.

    Google Scholar 

  22. E. Gekeler, On the solution of systems of equations by the epsilon algorithm of Wynn, Math. Comp. 26 (1972) 427–436.

    Google Scholar 

  23. P. Henrici, Elements of Numerical Analysis (Wiley, New York, 1964).

    Google Scholar 

  24. K. Jbilou and H. Sadok, Some results about vector extrapolation methods and related fixed-point iterations, J. Comput. Appl. Math. 36 (1991) 385–398.

    Google Scholar 

  25. C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations (SIAM, Philadelphia, PA, 1995).

    Google Scholar 

  26. H. Le Ferrand, The quadratic convergence of the topological epsilon algorithm for systems of nonlinear equations, Numer. Algorithms 3 (1992) 273–284.

    Google Scholar 

  27. C. Lemaréchal, Une méthode de résolution de certains systèmes non linéaires bien posés, C. R. Acad. Sci. Paris Sér. A 272 (1971) 605–607.

    Google Scholar 

  28. B. Marder and H. Weitzner, A bifurcation problem in E-layer equilibria, Plasma Phys. 12 (1970) 435–445.

    Google Scholar 

  29. J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, San Diego, 1970).

    Google Scholar 

  30. M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method, IMA J. Numer. Anal. 13 (1993) 321–326.

    Google Scholar 

  31. W.C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations (SIAM, Philadelphia, PA, 1974).

    Google Scholar 

  32. H. Sadok, About Henrici's transformation for accelerating vector sequences, J. Comput. Appl. Math. 29 (1990) 101–110.

    Google Scholar 

  33. D.S. Watkins, Fundamentals of Matrix Computations (Wiley, New York, 1991).

    Google Scholar 

  34. L. Wegge, On a discrete version of the Newton–Raphson method, SIAM J. Numer. Anal. 3 (1966) 134–142.

    Google Scholar 

  35. P. Wolfe, The secant method for simultaneous nonlinear equations, Commun. ACM 2 (1959) 12–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brezinski, C. A Classification of Quasi-Newton Methods. Numerical Algorithms 33, 123–135 (2003). https://doi.org/10.1023/A:1025551602679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025551602679

Navigation