Abstract
We study which infinite posets have simple cofinal subsets such as chains, or decompose canonically into such subsets. The posets of countable cofinality admitting such a decomposition are characterized by a forbidden substructure; the corresponding problem for uncountable cofinality remains open.
Similar content being viewed by others
References
Diestel, R.: Relating subsets of a poset, and a partition theorem for WQOs, Order 18 (2001), 275–279. Better version available at http://www.math.uni-hamburg.de/math/research/preprints/hbm.html
Diestel, R. and Kühn, D.: Graph minor hierarchies, to appear in Discrete Appl. Math.
Galvin, F., Milner, E. C. and Pouzet, M.: Cardinal representations for closures and preclosures, Trans. Amer. Math. Soc. 328 (1991), 667–693.
R. Fraïssé, Theory of Relations, North-Holland, Amsterdam, 1986.
Milner, E. C. and Prikry, K.: The cofinality of a partially ordered set, Proc. London Math. Soc. 46 (1983), 454–470.
Pouzet, M.: Parties cofinales des ordres partiels ne contenant pas d'antichaines infinies, Preprint, 1980.
Sierpinski, W.: Sur un problème de la théorie des relations, Ann. Scuola Norm. Sup. Pisa 2 (1933), 285–287.
Todorcevic, St.: Directed sets and cofinal types, Trans. Amer. Math. Soc. 290 (1985), 711–723.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Diestel, R., Pikhurko, O. On the Cofinality of Infinite Partially Ordered Sets: Factoring a Poset into Lean Essential Subsets. Order 20, 53–66 (2003). https://doi.org/10.1023/A:1024449306316
Issue Date:
DOI: https://doi.org/10.1023/A:1024449306316