Abstract
Let L be a general linear complex in PG(3, q) for any prime power q. We show that when GF(q) is extended to GF(q 2), the extended lines of L cover a non-singular Hermitian surface H ≅ H(3, q 2) of PG(3, q 2). We prove that if Sis any symplectic spread PG(3, q), then the extended lines of this spread form a complete (q 2 + 1)-span of H. Several other examples of complete spans of H for small values of q are also discussed. Finally, we discuss extensions to higher dimensions, showing in particular that a similar construction produces complete (q 3 + 1)-spans of the Hermitian variety H(5, q 2).
Similar content being viewed by others
References
M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math., Vol. 76 (1984) pp. 469–514.
S. Ball, On ovoids of O(5, q), preprint.
R. H. Bruck, Construction problems of finite projective planes, Combinatorial Mathematics and its Applications, Univ. of North Carolina Press, Chapel Hill (1969) pp. 426–514.
J. Cannon and C. Playoust, An Introduction to MAGMA, University of Sydney Press, Sydney (1993).
A. Cossidente and G. Korchmáros, Transitive ovoids of the Hermitian surface of PG(3, q2), q even, J. Combin. Theory Ser. A, Vol. 101 (2003) pp. 117–130.
R. H. Dye, New families of complete caps, and the asymptotic size of the largest caps, of quadrics over prime fields, Geom. Dedicata, Vol. 74 (1999) pp. 147–164.
G. L. Ebert and J.W. P. Hirschfeld, Complete systems of lines on a Hermitian surface over a finite field, Des. Codes Cryptogr., Vol. 17 (1999) pp. 253–268.
J. W. P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford University Press, Oxford (1985).
J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, Oxford University Press, Oxford (1991).
P. B. Kleidman, The Subgroup Structure of Some Finite Simple Groups, Ph.D. Thesis, Cambridge (1987).
S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Research Notes in Mathematics, Vol. 104, Pitman, Boston-London-Melbourne (1984).
B. Segre, Forme e geometrie hermitiane con particolare riguardo al caso finito, Ann. Mat. Pura Appl., Vol. 70 (1965) pp. 1–201.
J. A. Thas, A note on spreads and partial spreads of Hermitian varieties, Simon Stevin, Vol. 63 (1989) pp. 101–105.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Aguglia, A., Cossidente, A. & Ebert, G.L. Complete Spans on Hermitian Varieties. Designs, Codes and Cryptography 29, 7–15 (2003). https://doi.org/10.1023/A:1024179703511
Issue Date:
DOI: https://doi.org/10.1023/A:1024179703511