An Analysis of the Reliability Phenomenon in the FitzHugh-Nagumo Model | Journal of Computational Neuroscience
Skip to main content

An Analysis of the Reliability Phenomenon in the FitzHugh-Nagumo Model

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The reliability of single neurons on realistic stimuli has been experimentally confirmed in a wide variety of animal preparations. We present a theoretical study of the reliability phenomenon in the FitzHugh-Nagumo model on white Gaussian stimulation. The analysis of the model's dynamics is performed in three regimes—the excitable, bistable, and oscillatory ones. We use tools from the random dynamical systems theory, such as the pullbacks and the estimation of the Lyapunov exponents and rotation number. The results show that for most stimulus intensities, trajectories converge to a single stochastic equilibrium point, and the leading Lyapunov exponent is negative. Consequently, in these regimes the discharge times are reliable in the sense that repeated presentation of the same aperiodic input segment evokes similar firing times after some transient time. Surprisingly, for a certain range of stimulus intensities, unreliable firing is observed due to the onset of stochastic chaos, as indicated by the estimated positive leading Lyapunov exponents. For this range of stimulus intensities, stochastic chaos occurs in the bistable regime and also expands in adjacent parts of the excitable and oscillating regimes. The obtained results are valuable in the explanation of experimental observations concerning the reliability of neurons stimulated with broad-band Gaussian inputs. They reveal two distinct neuronal response types. In the regime where the first Lyapunov has negative values, such inputs eventually lead neurons to reliable firing, and this suggests that any observed variance of firing times in reliability experiments is mainly due to internal noise. In the regime with positive Lyapunov exponents, the source of unreliable firing is stochastic chaos, a novel phenomenon in the reliability literature, whose origin and function need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander JC, Doedel EJ, Other HG (1990) On the resonance structure in a forced excitable system. SIAM J. Appl. Math. 50: 1373–1418.

    Google Scholar 

  • Ali F, Menzinger M (1999) On the local stability of limit cycles. Chaos 9: 348–356.

    Google Scholar 

  • Arnold L (1998) Random Dynamical Systems. Springer-Verlag, Berlin.

    Google Scholar 

  • Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput. 8: 1185–1202.

    Google Scholar 

  • Barnes B, Grimshaw R (1997a) Analytical and numerical studies of the Bonhoeffer van der Pol system. J. Aust. Math. Soci. B 38: 427–453.

    Google Scholar 

  • Barnes B, Grimshaw R (1997b) Numerical studies of the periodically forced Bonhoeffer van der Pol system. Intl. J. Bifurcation and Chaos 7: 2653–2689.

    Google Scholar 

  • Berry MJ, Warland DK, Meister M (1997) The structure and precision of retinal spike trains. Proc. Natl. Acad. Sciences USA. 94: 5411–5416.

    Google Scholar 

  • Bialek W, Rieke F, De Ruyter van Steveninck RR, Warland D (1991) Reading a neural code. Science 252: 1854–1857.

    Google Scholar 

  • Braaksma B, Grasman J (1993) Critical dynamics of the Bonhoeffer van der Pol equation and its chaotic response to periodic stimulation. Physica D 68: 265–280.

    Google Scholar 

  • Braun HA, Huber MT, Voigt K, Pakdaman K, Neiman A, Moss F (2001) Tonic-to-bursting bifurcations in neuronal recordings and HH-type computer simulations. American Physical Society Meeting, V23.002 Session V23, Bifurcations in Biological Systems: Neurons, Perception, and Behavior. FOCUS session, March 15, Washington State Convention Center, Seattle, Washington.

  • Bryant H, Segundo JP (1976) Spike initiation by transmembrane current: A white noise analysis. J. Physiol. 260: 279–314.

    Google Scholar 

  • Cecchi GA, Sigman M, Alonso JM, Martinez L, Chialvo DR, Magnasco MO (2000) Noise in neurons is message dependent. Proc. Natl. Acad. Sciences USA 97: 5557–5561.

    Google Scholar 

  • Crauel H (1990) Extremal exponents of random dynamical systems do not vanish. J. Dynamics and Diff. Equs. 2: 245–291.

    Google Scholar 

  • Dan Y, Alonso JM, Usrey WM, Reid RC (1998) Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus. Nature Neurosci. 1: 501–507.

    Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1: 445–466.

    Google Scholar 

  • Guttman R, Feldman L, Lecar H (1974) Squid axon membrane response to white noise stimulation. Biophys. J. 14: 941–955.

    Google Scholar 

  • Haag J, Borst A (1997) Encoding of visual motion information and reliability in spiking and graded potential neurons. J. Neurosci. 17: 4809–4819.

    Google Scholar 

  • Hunter JD, Milton JG, Thomas PJ, Cowan JD (1998) Resonance effect for neural spike time reliability. J. Neurophysiol. 80: 1427–1438.

    Google Scholar 

  • Jensen RV (1998) Synchronization of randomly driven nonlinear oscillators. Phys. Rev. E 58: R6907–R6910.

    Google Scholar 

  • Juusola M, French AS (1997) The efficiency of sensory information coding by mechanoreceptor neurons. Neuron 18: 959–968.

    Google Scholar 

  • Keller H, Ochs G (1999) Numerical Approximation of Random Attractors in Stochastic Dynamics. Crauel H, Gundlach M, eds. Springer-Verlag, New York. pp. 93–115.

    Google Scholar 

  • Koch C (1999) Biophysics of Computation. Oxford University Press, New York.

    Google Scholar 

  • Kröller J, Grüsser OJ, Weiss LR (1988) Observations on phaselocking within the response of primary muscle spindle afferents to pseudo-random stretch. Biol. Cyber. 59: 49–54.

    Google Scholar 

  • Le Jan Y (1987) Equilibre statistisque pour les produits de difféomorphismes aléatoires indépendants. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 23: 111–120.

    Google Scholar 

  • Lestienne R (2001) Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog. Neurobiol. 65: 545–591.

    Google Scholar 

  • Longtin A (2000) Effect of noise on the tuning properties of excitable systems. Chaos, Solitions, and Fractals 11: 1835–1848.

    Google Scholar 

  • Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506.

    Google Scholar 

  • Nagumo JS, Arimato S, Yoshizawa S (1962) An active pulse transmission line simulating a nerve axon. Proc. IRE 50: 2061–2070.

    Google Scholar 

  • Pakdaman K (2002) The reliability of the stochastic active rotator. Neural Comput. 14: 781–792.

    Google Scholar 

  • Pakdaman K, Mestivier D (2001) External noise synchronizes forced oscillators. Phys. Rev. E 64: 030901 (R).

    Google Scholar 

  • Pakdaman K, Tanabe S (2001) Random dynamics of the Hodgkin-Huxley neuron model. Phys. Rev. E 64: 050902 (R).

    Google Scholar 

  • Pakdaman K, Tanabe S, Shimokawa T (2001) Coherence resonance and discharge time reliability in neurons and neuronal models. Neural Networks 14: 895–905.

    Google Scholar 

  • Pikovsky A, Zaks M, Rosenblum M, Osipov G, Kurths J (1997) Phase synchronization of chaotic oscillations in terms of periodic orbits. Chaos 7: 680–687.

    Google Scholar 

  • Reinagel P, Reid RC (2000) Temporal coding of visual information in the Thalamus. J. Neurosci. 20: 5392–5400.

    Google Scholar 

  • Rieke F, Warland D, De Ruyter van Steveninck RR, Bialek W (1997) Spikes. MIT Press, Cambridge, MA.

    Google Scholar 

  • Rinzel J, Ermentrout B (1998) Analysis of neural excitability and oscillations. In: Koch C, Segev I, eds., Methods in Neuronal Modeling. MIT Press, Cambridge, MA. pp. 251–291.

    Google Scholar 

  • Ruelle D (1987) Chaotic Evolution and Strange Attractors. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schenk-Hoppé KR (1996) Bifurcation scenarios of the noisy Duffing-van der Pol oscillator. Non-linear Dynamics 11: 255–274.

    Google Scholar 

  • Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput. 10: 1679–1703.

    Google Scholar 

  • Segundo JP, Stiber M, Altshuler E, Vibert JF (1994) Transients in the inhibitory driving of neurons and their postsynaptic consequences. Neuroscience 62: 459–480.

    Google Scholar 

  • Segundo JP, Vibert JF, Stiber M, Hanneton S (1995). Periodically modulated inhibition and its postsynaptic consequences. I. General features. Influence of modulatory frequency. Neuroscience 62: 459–480.

    Google Scholar 

  • Singer W (1999) Neuronal synchrony: A versatile code for the definition of relations? Neuron 24: 49–65, 111-125.

    Google Scholar 

  • Stiber M, Pakdaman K, Vibert J-F, Boussard E, Segundo JP, Nomura T, Sato S, Doi S (1997) Complex response of living neurons to pacemaker inhibition: A comparison of dynamical models. BioSystems 40: 177–188.

    Google Scholar 

  • Talay D (1999) The Lyapunov exponent of the Euler scheme for stochastic differential equations. In: Crauel H, Gundlach M, eds., Stochastic Dynamic. Springer-Verlag, New York. pp. 241–258.

    Google Scholar 

  • Tanabe S, Pakdaman K (2001) Noise-enhanced neuronal reliability. Phys. Rev. E 64: 041904.

    Google Scholar 

  • Usrey WM, Reid RC (1999) Synchronous activity in the visual system. Ann. Rev. Physiol. 61: 435–456.

    Google Scholar 

  • White JA, Rubinstein JT, Kay AR (2000) Channel noise in neurons. Trends in Neurosci. 23: 131–137.

    Google Scholar 

  • Yamanobe T, Pakdaman K (2002) Response of a pacemaker neuron model to stochastic pulse trains. Biol. Cyber. 86: 155–166.

    Google Scholar 

  • Yamanobe T, Pakdaman K, Nomura T, Sato S (1998) Analysis of the response of a pacemaker neuron model to transient inputs. Biosystems 48: 287–295.

    Google Scholar 

  • Yoshino K, Nomura T, Pakdaman K, Sato S (1999) Synthetic analysis of periodically stimulated excitable and oscillatory membrane models. Phys. Rev. E 59: 956–969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosmidis, E.K., Pakdaman, K. An Analysis of the Reliability Phenomenon in the FitzHugh-Nagumo Model. J Comput Neurosci 14, 5–22 (2003). https://doi.org/10.1023/A:1021100816798

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021100816798