PSICO: Solving Protein Structures with Constraint Programming and Optimization | Constraints Skip to main content
Log in

PSICO: Solving Protein Structures with Constraint Programming and Optimization

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

In this paper we propose PSICO (Processing Structural Information with Constraint programming and Optimisation) as a constraint-based approach to determining protein structures compatible with distance constraints obtained from Nuclear Magnetic Resonance (NMR) data. We compare the performance of our proposed algorithm with DYANA (“Dynamics algorithm for NMR applications”) an existing commercial application based on simulated annealing. On a test case with experimental data on the dimeric protein Desulforedoxin, the method proposed here supplied similar results in less than 10 minutes compared to approximately 10 hours of computation time for DYANA. Although the quality of results can still be improved, this shows that CP technology can greatly reduce computation time, a major advantage because structural NMR technique generally demands multiple runs of structural computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abe, H., Braun, W., Noguti, T., & Go, N. (1984). Rapid calculation of first and second derivatives of conformationalener gy with respect to dihedralangl es for proteins. generalr ecurrent equations. Computers Chemistry, 5(4): 239.

  2. Archer, M., Huber, R., Tavares, P., Moura, I., Moura, J. J., Carrondo, M. A., Sieker, L. C., LeGall, J., & Romāo, M. J. (1995). Crystal structure of desulforedoxin from Desulfovibrio gigas determined at 1.8, A resolution: a novel non-heme iron protein structure. Journal of Molecular Biology, 251(5): 690.

    Google Scholar 

  3. Backofen, R. (1998). Constraint Techniques for Solving the Protein Structure Prediction Problem, CP98, Lecture Notes in Computer Science, Vol. 1520, page 72. Springer-Verlag.

    Google Scholar 

  4. Backofen, R. (2001). The protein structure prediction problem: a constraint optimisation approach using a new lower bound. Constraints, 6: 223.

    Google Scholar 

  5. Beldiceanu, N., & Contejean, E. (1994). Introducing Global Constraints in CHIP. Mathl. Comp. Modelling, 20(12): 97.

    Google Scholar 

  6. Buckle, A. M., Schreiber, G., & Fersht, A. R. (1994). Protein-protein recognition: crystal structural analysis of a Barnase-Barstar complex at 2.0-A resolution. Biochemistry, 33: 8878.

    Google Scholar 

  7. Bushnell, G. W., Louie, G. V., & Brayer, G. D. (1990). High-resolution three-dimensional structure of horse heart cytochrome c., Journal of Molecular Biology, 214: 585.

  8. Cheng, B., Choi, K., Lee, J., & Wu, J. (1999). Increasing constraint propagation by redundant modeling: an experience report. Constraints, 4: 167.

    Google Scholar 

  9. Gaspin, C. (2001). RNA secondary structure determination and representation based on constraints satisfaction. Constraints, 6: 201.

    Google Scholar 

  10. Gilbert, D., Backofen, R., & Yap, R. (2001). Special issue on bioinformatics. Constraints, 6: 139.

    Google Scholar 

  11. Goodfellow, B., Rusnak, F., Moura, I., Domke, T., & Moura, J. J. G. (1998). NMR determination of the global structure of the 113Cd derivative of Desulforedoxin: Investigation of the hydrogen bonding pattern at the metal center. Protein Science, 7: 928.

    Google Scholar 

  12. Güntert, P., Mumenthaler, C., & Wüthrich, K. (1997). Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273: 283.

    Google Scholar 

  13. Hecht, H. J., Szardenings, M., Collins, J., & Shomburg, D. (1991). Three-dimensional structure of the complexes between bovine chymotrypsinogen *A and two recombinant variants of human pancreatic secretory trypsin inhibitor (*Kazal-Type). J. Mol. Biol., 220: 711.

    Google Scholar 

  14. Jia, Z., Quail, J. W., Waygood, E. B., & Delbaere, L. T. J. (1993). The 2.0 angstroms resolution structure of Escherichia coli histidine-containing phosphocarrier protein HPR: a redetermination, J. Biol. Chem., 268: 22490.

    Google Scholar 

  15. Krippahl, L., & Barahona, P. (1999). Applying Constraint Programming to Protein Structure Determination, CP99, Lecture Notes in Computer Science, Vol. 1713, page 289. Springer-Verlag.

    Google Scholar 

  16. Krippahl, L., Trosset, M., & Barahona, P. (2001). Combining constraint programming and multidimensional scaling to solve distance geometry problems. In Proceedings of CP-AI-OR'2001, Imperial College, Kent UK, 67–80.

    Google Scholar 

  17. Leishman, S., Gray, P. M. D., & Fothergill, I. E. (1994). ASSASSIN: a constraint based assignment system for protein 2D nuclear magnetic resonance. In Milne, R., & Montgomery A., eds. Applications and Innovations in Expert Systems II, (Proceedings of Expert Systems 94, Cambridge), page 263.

  18. Marquart, W., Deisenhofer, Bode J., & Huber, R. (1983). The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors, Acta Crystallography, Section B, 39: 480.

    Google Scholar 

  19. McCoy, M., Stavridi, E. S., Waterman, J. L., Wieczorek, A. M., Opella, S. J., & Halazonetis, T. D. (1997). Hydrophobic side-chain size is a determinant of the three-dimensional structure of the P53 oligomerization domain. EMBO JOURNAL, 16: 6230.

    Google Scholar 

  20. Revesz, P. (1997). Refining restriction enzyme genome maps. Constraints, 2: 361.

    Google Scholar 

  21. Rodošek, R. (2001). A constraint-based approach for deriving 3-D structures of cyclic polypeptides. Constraints, 6(2&3): 257.

    Google Scholar 

  22. Sam-Haroud, D., & Faltings, B. (1996). Consistency techniques for continuous constraints. Constraints,1.

  23. Zimmerman, D. E., Kulikowski, C. A., & Montelione, G. T. (1993). A constraint reasoning system for automating sequence-specific resonance assignments from multidimensional protein NMR spectra. Ismb 1: 447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krippahl, L., Barahona, P. PSICO: Solving Protein Structures with Constraint Programming and Optimization. Constraints 7, 317–331 (2002). https://doi.org/10.1023/A:1020577603762

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020577603762

Navigation