Error analysis of corner cutting algorithms | Numerical Algorithms Skip to main content
Log in

Error analysis of corner cutting algorithms

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Corner cutting algorithms are used in different fields and, in particular, play a relevant role in Computer Aided Geometric Design. Evaluation algorithms such as the de Casteljau algorithm for polynomials and the de Boor–Cox algorithm for B‐splines are examples of corner cutting algorithms. Here backward and forward error analysis of corner cutting algorithms are performed. The running error is also analyzed and as a consequence the general algorithm is modified to include the computation of an error bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aumann, Corner cutting curves and a new characterization of Bézier and B-spline curves, Computer-Aided Geom. Design 14 (1997) 449–474.

    MATH  MathSciNet  Google Scholar 

  2. J.M. Carnicer and J.M. Peña, Shape preserving representations and optimality of the Bernstein basis, Adv. Comput. Math. 1 (1993) 173–196.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.M. Carnicer and J.M. Peña, Total positivity and optimal bases, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 133–155.

    Google Scholar 

  4. G. Farin, Curves and Surfaces for Computer Aided Geometric Design (Academic Press, San Diego, 1988).

    Google Scholar 

  5. R.T. Farouki and T.N.T. Goodman, On the optimal stability of Bernstein basis, Math. Comp. 65 (1996) 1553–1566.

    Article  MATH  MathSciNet  Google Scholar 

  6. R.T. Farouki and V.T. Rajan, On the numerical condition of polynomials in Bernstein form, Computer-Aided Geom. Design 4 (1987) 191–216.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Gasca and J.M. Peña, Corner cutting algorithms and totally positive matrices, in: Curves and Surfaces in Geometric Design, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (A.K. Peters, Wellesley, 1994) pp. 177–184.

    Google Scholar 

  8. M. Gasca and J.M. Peña, On factorizations of totally positive matrices, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 109–130.

    Google Scholar 

  9. T.N.T. Goodman, Shape preserving representations, in: Mathematical Methods in CAGD, eds. T. Lyche and L.L. Schumaker (Academic Press, Boston, 1989) pp. 333–357.

    Google Scholar 

  10. T.N.T. Goodman and C.A. Micchelli, Corner cutting algorithms for the Bézier representation of free form curves, Linear Algebra Appl. 99 (1988) 225–252.

    Article  MATH  MathSciNet  Google Scholar 

  11. T.N.T. Goodman and H.B. Said, Shape preserving properties of the generalized Ball basis, Computer-Aided Geom. Design 8 (1991) 115–121.

    Article  MATH  MathSciNet  Google Scholar 

  12. N.J. Higham, Accuracy and Stability of Numerical Algorithms (SIAM, Philadelphia, PA, 1996).

    Google Scholar 

  13. F.W.J. Olver, Error bounds for polynomial evaluation and complex arithmetic, IMA J. Numer. Anal. 2 (1982) 377–406.

    MATH  MathSciNet  Google Scholar 

  14. J.M. Peña, Shape preserving representations for trigonometric polynomial curves, Computer-Aided Geom. Desing 14 (1997) 5–11.

    Article  MATH  Google Scholar 

  15. J.M. Peña, B-splines and optimal stability, Math. Comp. 66 (1997) 1555–1560.

    Article  MATH  MathSciNet  Google Scholar 

  16. G.W. Stewart, Error analysis of the algorithm for shifting the zeros of a polynomial by synthetic division, Math. Comp. 25 (1971) 135–139.

    Article  MATH  MathSciNet  Google Scholar 

  17. N.K. Tsao, Error analysis of splitting algorithms for polynomials, Numer. Math. 32 (1979) 409–421.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.H. Wilkinson, The evaluation of the zeros of ill-conditioned polynomials, Parts I and II, Numer. Math. 1 (1959) 150–166 and 167–180.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied Science, Vol. 32 (Her Majesty's Stationery Office, London, 1963).

    Google Scholar 

  20. H. Wozniakowski, Rounding error analysis for the evaluation of a polynomial and some of its derivatives, SIAM J. Numer. Anal. 11 (1974) 780–787.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mainar, E., Peña, J. Error analysis of corner cutting algorithms. Numerical Algorithms 22, 41–52 (1999). https://doi.org/10.1023/A:1019190220312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019190220312

Navigation