Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions | Advances in Computational Mathematics Skip to main content
Log in

Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper provides several constructions of compactly supported wavelets generated by interpolatory refinable functions. It was shown in [7] that there is no real compactly supported orthonormal symmetric dyadic refinable function, except the trivial case; and also shown in [10,18] that there is no compactly supported interpolatory orthonormal dyadic refinable function. Hence, for the dyadic dilation case, compactly supported wavelets generated by interpolatory refinable functions have to be biorthogonal wavelets. The key step to construct the biorthogonal wavelets is to construct a compactly supported dual function for a given interpolatory refinable function. We provide two explicit iterative constructions of such dual functions with desired regularity. When the dilation factors are larger than 3, we provide several examples of compactly supported interpolatory orthonormal symmetric refinable functions from a general method. This leads to several examples of orthogonal symmetric (anti‐symmetric) wavelets generated by interpolatory refinable functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ning Bi, Xinrong Dai and Qiyu Sun, Construction of compactly supported M-band wavelets, Appl. Comput. Harmon. Anal. 6 (1999) 113-131.

    Article  MATH  MathSciNet  Google Scholar 

  2. C.K. Chui and Jian-ao Lian, Construction of compactly supported symmetric and antisymmetric orthonormal wavelets, Appl. Comput. Harmon. Anal. 2 (1995) 21-51.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Cohen and I. Daubechies, A stability criterion for biorthonormal wavelets bases and their related subband coding scheme, Duke Math. J. 68 (1992) 313-335.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Cohen, I. Daubechies and J. Feauveau, Bi-orthogonal bases of compactly supported wavelets, Comm. Pure. Appl. Math. 45 (1992) 485-560.

    MATH  MathSciNet  Google Scholar 

  5. A. Cohen, K. Gröchenig and L. Villemoes, Regularity of multivariate refinable functions, Constr. Approx. 15 (1999) 241-255.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. de Boor, R. DeVore and A. Ron, On the construction of multivariate (pre)wavelets, Constr. Approx. 9 (1993) 123-166.

    Article  MATH  MathSciNet  Google Scholar 

  7. I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988) 909-996.

    MATH  MathSciNet  Google Scholar 

  8. I. Daubechies, Ten Lectures on Wavelets, CBMS Conference Series in Applied Mathematics, Vol. 61 (SIAM, Philadelphia, PA, 1992).

    MATH  Google Scholar 

  9. S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986) 185-204.

    Article  MATH  MathSciNet  Google Scholar 

  10. T.N.T. Goodman and C.A. Micchelli, Orthonormal cardinal function, in: Wavelets: Theory, Algorithm, and Applications, eds. C.K. Chui, L. Montefusco and L. Pucris (Academic Press, San Diego, CA, 1994) pp. 53-88.

    Google Scholar 

  11. Bin Han, Symmetric orthonormal scaling functions and wavelets with dilation factor d = 4, Adv. Comput. Math. 8 (1998) 221-247.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Heller, Rank M wavelets with N vanishing moments, SIAM J. Matrix Anal. Appl. 16 (1995) 502-519.

    Article  MATH  MathSciNet  Google Scholar 

  13. Hui Ji, S.D. Riemenschneider and Zuowei Shen, Multivariate compactly supported fundamental refinable functions, dual and biorthogonal wavelets, Stud. Appl. Math. 102 (1999) 173-204.

    Article  MATH  MathSciNet  Google Scholar 

  14. Rong-Qing Jia, Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer. Math. Soc., to appear.

  15. Rong-Qing Jia and Zuowei Shen, Multiresolution and wavelets, Proc. Edinburgh Math. Soc. 37 (1994) 271-300.

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Lawton, S.L. Lee and Zuowei Shen, An algorithm for matrix extension and wavelet construction, Math. Comp. 65 (1996) 723-737.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. Lawton, S.L. Lee and Zuowei Shen, Stability and orthonormality of multivariate refinable functions, SIAM J. Math. Anal. 28 (1997) 999-1014.

    Article  MATH  MathSciNet  Google Scholar 

  18. R.M. Lewis, Cardinal interpolation multiresolution, J. Approx. Theory 26 (1994) 177-202.

    Article  Google Scholar 

  19. L.M. Reissell, Wavelet multiresolution representation of curves and surfaces, Graphical Models and Image Processing 58 (1996) 198-217.

    Article  Google Scholar 

  20. S.D. Riemenschneider and Zuowei Shen, Multidimensional interpolatory subdivision schemes, SIAM J. Numer. Anal. 34 (1997) 2357-2381.

    Article  MATH  MathSciNet  Google Scholar 

  21. S.D. Riemenschneider and Zuowei Shen, Construction of compactly supported biorthogonal wavelets in L 2(ℝs) (1997).

  22. A. Ron and Zuowei Shen, Sobolev regularity of refinable functions, Preprint (1997).

  23. Zuowei Shen, Refinable function vectors, SIAM J. Math. Anal. 29 (1998) 235-250.

    Article  MATH  MathSciNet  Google Scholar 

  24. W. Sweldens, The lifting scheme: A custom-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3 (1996) 186-200.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, H., Shen, Z. Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions. Advances in Computational Mathematics 11, 81–104 (1999). https://doi.org/10.1023/A:1018999220348

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018999220348

Navigation