Abstract
For the unit commitment problem in the hydro-thermal power system of VEAG Vereinigte Energiewerke AG Berlin we present a basic model and discuss possible extensions where both primal and dual solution approaches lead to flexible optimization tools. Extensions include staggered fuel prices, reserve policies involving hydro units, nonlinear start-up costs, and uncertain load profiles.
Similar content being viewed by others
References
J.R. Birge and F. Louveaux, Introduction to Stochastic Programming(Springer, New York, 1997).
C.C. Carøe and R. Schultz, Dual decomposition in stochastic integer programming, Operations Research Letters 24 (1999) 37–45.
C.C. Carøe and R. Schultz, A two-stage stochastic program for unit commitment under uncertainty in a hydro-thermal system, Preprint SC 98–11, Konrad-Zuse-Zentrum für Informationstechnik Berlin (1998). Downloadable as SC 98–11 from http://www.zib.de/bib/pub/pw/index.en. html.
Using the CPLEX Callable Library, CPLEX Optimization, Inc. 1994.
P. Carpentier, G. Cohen, J.-C. Culioli and A. Renaud, Stochastic optimization of unit commitment, a new decomposition framework, IEEE Transactions on Power Systems 11 (1996) 1067–1073.
D. Dentcheva, R. Gollmer, A. Möller, W. Römisch and R. Schultz, Solving the unit commitment problem in power generation by primal and dual methods, in: Progress in Industrial Mathematics at ECMI 96, eds. M. Brøns, M.P. Bendsøe and M.P. Sørensen (Teubner, Stuttgart, 1997) pp. 332–339.
D. Dentcheva and W. Römisch, Optimal power generation under uncertainty via stochastic programming, in: Stochastic Programming Methods and Technical Applications, eds. K. Marti and P. Kall, Lecture Notes in Economics and Mathematical Systems, Vol. 458 (Springer, Berlin, 1998) pp. 22–56.
J. Dupa?cov´a, G. Consigli and S.W. Wallace, Scenarios for multistage stochastic programs, Working Paper, Charles University Prague (1998). Submitted to Annals of Operations Research.
S. Feltenmark and K.C. Kiwiel, Dual applications of proximal bundle methods, including Lagrangian relaxation of nonconvex problems, SIAM Journal on Optimization (to appear).
S. Feltenmark, K.C. Kiwiel and P.O. Lindberg, Solving unit commitment problems in power production planning, in: Operations Research Proceedings 1996, eds. U. Zimmermann et al. (Springer, Berlin, 1997) pp. 236–241.
M. Fischer, Gestaffelte Brennstoffpreise in der Kraftwerkseinsatzoptimierung, Diplomarbeit, Technische Universität Berlin (1997).
R. Gollmer, A. Möller, W. Römisch, R. Schultz, G. Schwarzbach and J. Thomas, Optimale Blockauswahl bei der Kraftwerkseinsatzplanung der VEAG, in: Optimierung in der Energieversorgung II(VDI-Berichte 1352, 1997) pp. 71–85.
J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II(Springer, Berlin, 1993).
J. Jacobs, G. Freeman, J. Grygier, D. Morton, G. Schultz, K. Staschus and J. Stedinger, SOCRATES: A system for scheduling hydroelectric generation under uncertainty, Annals of Operations Research 59 (1995) 99–133.
N. Jiménez Redondo and A.J. Conejo, Short-term hydro-thermal coordination by Lagrangian relaxation, Solution of the dual problem, IEEE Transactions on Power Systems 14 (1999) 89–95.
K.C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization, Mathematical Programming 46 (1990) 105–122.
K.C. Kiwiel, User's Guide for NOA 2.0/3.0: A Fortran package for convex nondifferentiable optimization, Polish Academy of Science, System Research Institute, Warsaw (1993/1994).
C. Lemaréchal and A. Renaud, Dual equivalent convex and nonconvex problems, Research Report, INRIA, Rocquencourt (1996).
C. Lemaréchal, C. Sagastizćbal, F. Pellegrino and A. Renaud, Bundle methods applied to the unit commitment problem, in: System modelling and optimization, eds. J. Doležal and J. Fiedler (Chapman & Hall, London, 1996) pp. 395–402.
P.B. Luh, R.N. Tomastik and D. Zhang, An algorithm for solving the dual problem of hydrothermal scheduling, IEEE Transactions on Power Systems 13 (1998) 593–600.
A. Möller and W. Römisch, A dual method for the unit commitment problem, Preprint Nr. 95–1, Humboldt-Universität Berlin, Institut für Mathematik (1995). Downloadable from http:// taylor.mathematik.hu-berlin.de/publ/pre/1995/p-95–1.ps.
M.P. Nowak, A fast descent method for the hydro storage subproblem in power generation, Working Paper WP-96–109, IIASA, Laxenburg (Austria) (1996). Downloadable from http://www. iiasa.ac.at/Publications/Documents/WP-96–109.ps.
M.P. Nowak, Stochastic Lagrangian relaxation applied to power scheduling of a hydro-thermal system under uncertainty, Forthcoming dissertation, Humboldt-Universität Berlin, Institut für Mathematik (1999).
M.P. Nowak and W. Römisch, Stochastic Lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty, Preprint Nr. 98–24, Humboldt-Universität Berlin, Institut für Mathematik (1998). Submitted to Annals of Operations Research. Downloadable from http:// www.mathematik.hu-berlin.de/publ/pre/1998/M-98–24.
M.V.F. Pereira and L.M.V.G. Pinto, Multi-stage stochastic optimization applied to energy planning, Mathematical Programming 52 (1991) 359–375.
G.Ch. Pflug and A. Świetanowski, Optimal scenario tree generation for multiperiod fi-nancial optimization, Technical Report, AURORA TR 1998–22, Universität Wien (1998). Downloadable from ftp://ftp.par.univie.ac.at/projects/aurora/reports/ auroratr1998–22.ps.gz.
W. Römisch and R. Schultz, Decomposition of a multi-stage stochastic program for power dispatch, ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 76(3) (1996) 29–32.
R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse, Mathematical Programming 70 (1995) 73–89.
G.B. Sheble and G.N. Fahd, Unit commitment literature synopsis, IEEE Transactions on Power Systems 9 (1994) 128–135.
S. Takriti, The unit commitment problem, in: Operations Research in Industry, eds. T.A. Ciriani, S. Gliozzi and E.L. Johnson (Macmillan Press, 1999) (to appear).
S. Takriti, J.R. Birge and E. Long, A stochastic model for the unit commitment problem, EEE Transactions on Power Systems 11 (1996) 1497–1508.
S. Takriti, B. Krasenbrink and L.S.-Y. Wu, Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem, Operations Research (to appear).
S. Takriti, C. Supatgiat and L.S.-Y. Wu, Coordinating fuel inventory and electric power generation under uncertainty, IBM Research Report RC 21152, Yorktown Heights, New York (1998). Downloadable from http://domino.watson.ibm.com/library/CyberDig.nsf/Papers?SearchView&Query=RC21152.
I. Wegner, Erzeugung von Szenariobäumen für die Kraftwerks-Einsatzoptimierung, Diplomarbeit, Humboldt-Universität Berlin, Institut für Mathematik (1999).
A.J. Wood and B.F. Wollenberg, Power Generation, Operation and Control, 2nd ed. (Wiley, New York, 1996).
F. Zhuang and F.D. Galiana,Towards a more rigorous and practical unit commitment by Lagrangian relaxation, IEEE Transactions on Power Systems 3(1988) 763–773.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gollmer, R., Nowak, M.P., Römisch, W. et al. Unit commitment in power generation – a basic model and some extensions. Annals of Operations Research 96, 167–189 (2000). https://doi.org/10.1023/A:1018947401538
Issue Date:
DOI: https://doi.org/10.1023/A:1018947401538