Abstract
In this paper cubature formulas based on bivariate C 1 local polynomial splines with a four directional mesh [4] are generated and studied. Some numerical results with comparison with other methods are given. Moreover the method proposed is applied to the numerical evaluation of 2‐D singular integrals defined in the Hadamard finite part sense. Computational features, convergence properties and error bounds are proved.
Similar content being viewed by others
References
A. Alaylioglu, D.S. Lubinsky and D. Eyre, Product integration of logarithmic singular integrands based on cubic splines, J. Comput. Appl. Math. 11 (1984) 353–366.
C.K. Chui and R.-H. Wang, Concerning C 1 B-splines on triangulations of non-uniform rectangular partition, Approx. Theory Appl. 1 (1984) 11–18.
C.K. Chui, Multivariate Splines, CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM, Philadelphia, PA, 1988).
C.K. Chui and R.-H. Wang, On a bivariate B-spline basis, Scientia Sinica 27 (1984) 1129–1142.
C.K. Chui and R.-H. Wang, Multivariate B-splines on triangulated rectangles, J. Math. Anal. Appl. 92(2) (1983) 533–551.
C. Dagnino, V. Demichelis and E. Santi, Numerical integration based on quasi-interpolating splines, Computing 507 (1993) 149–163.
C. Dagnino and P. Lamberti, Numerical evaluation of Cauchy principal value integrals based on local spline approximation operators, J. Comput. Appl. Math. 76 (1996) 231–238.
C. Dagnino, S. Perotto and E. Santi, Product formulas based on spline approximation for the numerical evaluation of certain 2-D CPV integrals, in: Proceedings International Conference on Approximation and Optimization (ICAOR' 96) (1996).
C. Dagnino and P. Rabinowitz, Product integration of singular integrands using quasi-interpolatory splines, Comput. Math. Appl. 33(1/2) (1997) 59–67.
G. Evans, Practical Numerical Integration (Wiley, New York, 1993).
M. Guiggiani and A. Gigante, A general algorithm for multidimensional Cauchy Principal Value integrals in the boundary element method, Trans. ASME 57 (1990) 906–915.
M. Guiggiani, G. Krishnasamy, T.J. Rudolphi and F.J. Rizzo, A general algorithm for the numerical solution of hypersingular boundary integral equations, Trans. ASME 59 (1992) 604–614.
G. Monegato, The numerical evaluation of a 2-D Cauchy Principal Value integral arising in boundary integral equation methods, Math. Comp. 62(206) (1994) 765–777.
G. Monegato, Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math. 50 (1994) 9–31.
P. Rabinowitz, Numerical integration based on approximating splines, J. Comput. Appl. Math. 33 (1990) 73–83.
P.S. Theocaris, N.I. Ioakimidis and J.G. Kazantzakis, On the numerical evaluation of two dimensional principal value integrals, Internat. J. Numer. Methods Engrg. 14 (1980) 629–634.
P.B. Zwart, Multivariate splines with nondegenerate partitions, SIAM J. Numer. Anal. 10(4) (1973) 665–673.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Dagnino, C., Lamberti, P. Numerical integration of 2‐D integrals based on local bivariate C 1 quasi‐interpolating splines. Advances in Computational Mathematics 8, 19–31 (1998). https://doi.org/10.1023/A:1018927809928
Issue Date:
DOI: https://doi.org/10.1023/A:1018927809928