Numerical integration of 2‐D integrals based on local bivariate C 1 quasi‐interpolating splines | Advances in Computational Mathematics Skip to main content
Log in

Numerical integration of 2‐D integrals based on local bivariate C 1 quasi‐interpolating splines

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper cubature formulas based on bivariate C 1 local polynomial splines with a four directional mesh [4] are generated and studied. Some numerical results with comparison with other methods are given. Moreover the method proposed is applied to the numerical evaluation of 2‐D singular integrals defined in the Hadamard finite part sense. Computational features, convergence properties and error bounds are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alaylioglu, D.S. Lubinsky and D. Eyre, Product integration of logarithmic singular integrands based on cubic splines, J. Comput. Appl. Math. 11 (1984) 353–366.

    Article  MATH  MathSciNet  Google Scholar 

  2. C.K. Chui and R.-H. Wang, Concerning C 1 B-splines on triangulations of non-uniform rectangular partition, Approx. Theory Appl. 1 (1984) 11–18.

    MATH  MathSciNet  Google Scholar 

  3. C.K. Chui, Multivariate Splines, CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM, Philadelphia, PA, 1988).

    Google Scholar 

  4. C.K. Chui and R.-H. Wang, On a bivariate B-spline basis, Scientia Sinica 27 (1984) 1129–1142.

    MATH  MathSciNet  Google Scholar 

  5. C.K. Chui and R.-H. Wang, Multivariate B-splines on triangulated rectangles, J. Math. Anal. Appl. 92(2) (1983) 533–551.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Dagnino, V. Demichelis and E. Santi, Numerical integration based on quasi-interpolating splines, Computing 507 (1993) 149–163.

    Article  MathSciNet  Google Scholar 

  7. C. Dagnino and P. Lamberti, Numerical evaluation of Cauchy principal value integrals based on local spline approximation operators, J. Comput. Appl. Math. 76 (1996) 231–238.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Dagnino, S. Perotto and E. Santi, Product formulas based on spline approximation for the numerical evaluation of certain 2-D CPV integrals, in: Proceedings International Conference on Approximation and Optimization (ICAOR' 96) (1996).

  9. C. Dagnino and P. Rabinowitz, Product integration of singular integrands using quasi-interpolatory splines, Comput. Math. Appl. 33(1/2) (1997) 59–67.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Evans, Practical Numerical Integration (Wiley, New York, 1993).

    MATH  Google Scholar 

  11. M. Guiggiani and A. Gigante, A general algorithm for multidimensional Cauchy Principal Value integrals in the boundary element method, Trans. ASME 57 (1990) 906–915.

    MATH  MathSciNet  Google Scholar 

  12. M. Guiggiani, G. Krishnasamy, T.J. Rudolphi and F.J. Rizzo, A general algorithm for the numerical solution of hypersingular boundary integral equations, Trans. ASME 59 (1992) 604–614.

    MATH  MathSciNet  Google Scholar 

  13. G. Monegato, The numerical evaluation of a 2-D Cauchy Principal Value integral arising in boundary integral equation methods, Math. Comp. 62(206) (1994) 765–777.

    Article  MATH  MathSciNet  Google Scholar 

  14. G. Monegato, Numerical evaluation of hypersingular integrals, J. Comput. Appl. Math. 50 (1994) 9–31.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. Rabinowitz, Numerical integration based on approximating splines, J. Comput. Appl. Math. 33 (1990) 73–83.

    Article  MATH  MathSciNet  Google Scholar 

  16. P.S. Theocaris, N.I. Ioakimidis and J.G. Kazantzakis, On the numerical evaluation of two dimensional principal value integrals, Internat. J. Numer. Methods Engrg. 14 (1980) 629–634.

    Article  MathSciNet  Google Scholar 

  17. P.B. Zwart, Multivariate splines with nondegenerate partitions, SIAM J. Numer. Anal. 10(4) (1973) 665–673.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagnino, C., Lamberti, P. Numerical integration of 2‐D integrals based on local bivariate C 1 quasi‐interpolating splines. Advances in Computational Mathematics 8, 19–31 (1998). https://doi.org/10.1023/A:1018927809928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018927809928

Navigation