Abstract
Fast decoding algorithms for short codes based on modifications of maximum likelihood decoding algorithms of first order Reed-Muller codes are described. Only additions-subtractions, comparisons and absolute value calculations are used in the algorithms. Soft and hard decisions maximum likelihood decoding algorithms for first order Reed-Muller and the Nordstrom-Robinson codes with low complexity are proposed.
Similar content being viewed by others
References
J-P Adoul, Fast ML decoding algorithm for the Nordstrom-Robinson code, IEEE Trans. nform. Theory Vol. IT-33 (1987) pp. 931–933.
A. Ashikhmin. A. Dmitriyov, S. Litsyn and S. Portnoy, Patent USSR, No 1133980 (1988).
A. Ashikhmin and S. Litsyn, Analysis of quasi-optimal decoding algorithms of biorthogonal codes, Radio-electronica Vol31, No. 11 (1988) pp. 30–34( in Russian).
A. Ashikhmin and S. Litsyn, Fast decoding algorithms for first order Reed-Muller and related codes, Tel-Aviv University, Reponrt EE93–2 (1993).
A. Ashikhmin and S. Litsyn, List algorithm for search of the maximal element of Walsh transform, Radio-electronica Vol 32, No. 3 (1990) pp 15–22(In Russian).
Y. Be'ery and J. Snyders, Optimal soft decision block decoders based on fast Hadamard transform, IEEE Trans. Inform. Theory Vol. IT32 (1986) pp. 355–364.
E. R. Berlekamp, The technology of error-conecting codes, Proc. IEEE, Vol68 (1980) pp.355–364
E. Berlekamp and L. R. Welch, Weight distributions of the cosets of the (32,6) Reed-Muller code. IEEE Trans Inform. Theory. Vol. IT-18 (1972) pp.203–207.
J. H. Conway and N J. A. Sloane, Fast quantizing and decoding algorithms for lattice quantizers and codes, IEEE Trans. Inform. Theory Vol. IT-28 (1982) pp. 272–232.
J. H. Conway, N.J. A. Sloane, Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice, IEEE Trans. Inform Theory. Vol. [vnIT 32], No. I1 (1986) pp. 41–50.
J H. Conway and N. J A. Sloane, Sphere Packings, Lattices andGroups Springer-Verlag, New York (1988).
G. D. Fomey,Jr., Coset codes II: Binary lattices and related codes, IEEE Trans Inform. Theory. Vol. IT-34 (1988)pp. 1152–1187.
S.W. Golomb, ed., Digital Commumncatons with Space Applicatons. Prentice-Hall, Englewood CliffS NJ (1964).
R R. Green, A serial orthogonal decoder, JPL Space Programs Summary Vol37 39 IV (1966) pp. 247–253.
C. M. Hackett, An efficient algorithm for soft decision decoding of the (24,12) extended Golay code, IEEE Trans. Commun., Vol.Com-29 (1981) pp. 909 911, and Vol. Com 30 (1982) p. 554.
S. Litsyn, G. Mikhailovskaya, E. Nemirovsky and 0. Shekhovtsov, Fast decoding of first order Reed-Mnller indes in the Galssian channel, Prolemr of Control and Information Theory. Vol14. No. 3 (1985) pp. 189–201.
S. Litsyn and 0. Shekhovtsov, Fast decoding algorithm for first order Reed-Muller codes, Problems of Information Transmission Vol19, No.2 (1983) pp. 3–7.
J. A. Maiorna, A classification of the sets of the Reed Muller code 72(16) Mathcmatics of Computation Vol57, No. 195 (1991) pp. 403–414.
E J. MacWilliams and N. J. A. Sloane, The Theory of Errorcorecing Codes North-Holland, Amsterdam, The Netherlands (1977).
H. J. Manley, H. F. Mattson and J. R. Schatz, Some applications of Good's theorem, IEEE Trans. nform. Theory Vol. IT-26 (1980) pp. 475–476.
V. Pless, Decoding the Golay codes, IEEE Trans. Inform. Theory, Vol. IT-32 (1986) pp. 561 567.
N. J. A. Sloane and R. J. Dick, On the enumeration of cosets of first order Reed-Muller codes, Proc. IEEE Int Conf Communications Vol. 7 (1971) 36–2–36–6.
J. Snyders and Y. Be'ery, Maximum likelihood soft decoding of binary block codes and decoders for the Golay codes, IEEE Trans. Inform. Theory Vol. IT-35 (1986) pp. 963–975.
J. Wolfmann, A permutation decoding of the (24,12,8) Golay code, IEEE Trans. Inform. Theory, Vol.IT-29 (1983) pp. 748–750.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ashikhmin, A.E., Litsyn, S.N. Fast Decoding Algorithms for First Order Reed-Muller and Related Codes. Designs, Codes and Cryptography 7, 187–214 (1996). https://doi.org/10.1023/A:1018057506207
Issue Date:
DOI: https://doi.org/10.1023/A:1018057506207