Block Descent Methods and Hybrid Procedures for Linear Systems | Numerical Algorithms Skip to main content
Log in

Block Descent Methods and Hybrid Procedures for Linear Systems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we define and study several types of block descent methods for the simultaneous solution of a system of linear equations with several right hand sides. Then, improved block EN methods will be proposed. Finally, block hybrid and minimal residual smoothing procedures will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barzilai and J.M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988) 141–148.

    Google Scholar 

  2. F.L. Bauer and A.S. Householder, Some inequalities involving the Euclidean condition of a matrix, Numer. Math. 2 (1960) 308–311.

    Google Scholar 

  3. C. Brezinski, Projection Methods for Systems of Equations (North-Holland, Amsterdam, 1997).

    Google Scholar 

  4. C. Brezinski and M. Redivo Zaglia, Hybrid procedures for solving linear systems, Numer. Math. 67 (1994) 1–19.

    Google Scholar 

  5. C. Brezinski and M. Redivo Zaglia, Block projection methods for linear systems, Numer. Algorithms 29 (2002) 33–43.

    Google Scholar 

  6. T. Eirola and O. Nevanlinna, Accelerating with rank-one updates, Linear Algebra Appl. 121 (1989) 511–520.

    Google Scholar 

  7. M. Fiedler, Special Matrices and their Applications in Numerical Mathematics (Martinus Nijhoff Publishers, Dordrecht, 1986).

    Google Scholar 

  8. Gui-Ding Gu and He-BingWu, A block EN algorithm for nonsymmetric linear systems with multiple right-hand sides, Linear Algebra Appl. 299 (1999) 1–20.

    Google Scholar 

  9. K. Jbilou, Smoothing iterative block methods for linear systems with multiple right-hand sides, J. Comput. Appl. Math. 107 (1999) 97–109.

    Google Scholar 

  10. A.W. Marshall and I. Olkin, Matrix versions of the Cauchy and Kantorovich inequalities, Aequationes Math. 40 (1990) 89–93.

    Google Scholar 

  11. D.P. O'Leary, The block conjugate gradient algorithm and related methods, Linear Algebra Appl. 29 (1980) 293–322.

    Google Scholar 

  12. M. Raydan, On the Barzilai and Borwein choice of the steplength for the gradient method, IMA J. Numer. Anal. 13 (1993) 321–326.

    Google Scholar 

  13. W. Schönauer, H. Müller and E. Schnepf, Numerical tests with biconjugate gradient type methods, Z. Angew. Math. Mech. 65 (1985) T400–T402.

    Google Scholar 

  14. R. Weiss, A theoretical overview of Krylov subspace methods, Appl. Numer. Math. 19 (1995) 207–233.

    Google Scholar 

  15. R. Weiss, Parameter-Free Iterative Linear Solvers (Akademie Verlag, Berlin, 1996).

    Google Scholar 

  16. F.-Z. Zhang, Matrix Theory. Basic Results and Techniques (Springer-Verlag, New York, 1999).

    Google Scholar 

  17. L. Zhou and H.F. Walker, Residual smoothing techniques for iterative methods, SIAMJ. Sci. Comput. 15 (1994) 297–312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brezinski, C. Block Descent Methods and Hybrid Procedures for Linear Systems. Numerical Algorithms 29, 21–32 (2002). https://doi.org/10.1023/A:1014843519588

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014843519588

Navigation