Abstract
We propose and examine the primal and dual finite element method for solving an axially symmetric elliptic problem with mixed boundary conditions. We derive an a posteriori error estimate and generalize the method used for a nonlinear elliptic problem. Finally, an a posteriori error estimate for a nonlinear parabolic problem based on the concept of hierarchical finite element basis functions is introduced.
Similar content being viewed by others
References
M. Ainsworth and A. Craig, A posteriori error estimators in the finite element method, Numer. Math. 60 (1992) 429–463.
M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg. 142 (1997) 1–88.
I. Babuška, A-posteriori error estimation for the finite element method, in: Proc. of Conf. on Nonlinear Finite Element Analysis in Structural Mechanics, Bochum, 1980/1981, pp. 3–10.
I. Babuška and A. Miller, A feedback finite element method with a posteriori error estimation. Part I, Comput. Methods Appl. Mech. Engrg. 61 (1987) 1–40.
I. Babuška and W. Rheinboldt, A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12 (1978) 1597–1615.
I. Babuška, T. Strouboulis and S.K. Gangaraj, Guaranteed computable bounds for the exact error in the finite element solution Part I: One-dimensional model problem, Comput. Methods Appl. Mech. Engrg. 176 (1999) 51–79.
R.E. Bank and A. Weiser, Some a posteriori error estimator for elliptic partial differential equations, Math. Comp. 44 (1985) 283–301.
B. Boroomand, O.C. Zienkiewicz and J.Z. Zhu, Recovery procedures in error estimation and adaptivity. Part I: Adaptivity in linear problems, Comput. Methods Appl. Mech. Engrg. 176 (1999) 111–125.
B. Boroomand and O.C. Zienkiewicz, Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour, Comput. Methods Appl. Mech. Engrg. 176 (1999) 127–146.
J.H. Brandts, Superconvergence and a posteriori error estimates for triangular mixed finite elements, Numer. Math. 68 (1994) 311–324.
K. Burrage, A special family of Runge-Kutta methods for solving stiff differential equations, BIT 18 (1978) 22–41.
J.C. Butcher, A transformed implicit Runge-Kutta method, J. Assoc. Comput. Mach. 26 (1979) 731–738.
P.G. Ciarlet, Basic error estimates for elliptic problems, in: Handbook of Numerical Analysis II, eds. P.G. Ciarlet and J.L. Lions (North-Holland, Amsterdam, 1991).
R. Durán, M.A. Muschietti and R. Rodríguez, On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math. 59 (1991) 107–127.
J. Franců, Monotone operators. A survey directed to applications to differential equations, Appl.Math. 35 (1990) 257–301.
H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie-Verlag, Berlin, 1974).
J. Haslinger and I. Hlaváček, Convergence of a finite element method based on the dual variational formulation, Appl. Math. 21 (1976) 43–65.
I. Hlaváček and M. Křížek, Dual finite element analysis of three-dimensional axisymmetric elliptic problems, Parts I, II, Numer. Methods Partial Differential Equations 9 (1993) 507–526, 527–550.
I. Hlaváček, M. Křížek and J.Malý, On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type, J. Math. Anal. Appl. 184 (1994) 168–189.
C. Johnson, Numerical Solutions of Partial Differential Equations by the Finite Element Method (Cambridge Univ. Press, Cambridge, 1988).
M. Křížek and P. Neittaanmäki, Finite Element Approximation of Variational Problems and Applications, Vol. 50 (Longman Scientific & Technical, Harlow, 1990).
M. Křížek and P. Neittaanmäki, Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications (Kluwer, Amsterdam, 1996).
M. Křížek, P. Neittaanmäki and R. Stenberg, eds., Finite Element Methods: Superconvergence, Postprocessing and A Posteriori Estimates, Proc. of Conf., Jyväskylä, 1996, Lecture Notes in Pure and Applied Mathematics, Vol. 196 (Marcel Dekker, New York, 1998).
S. Larsson, V. Thomée and N.Y. Zhang, Interpolation of coefficients and transformation of the dependent variable in the finite element methods for the nonlinear heat equation, Math. Methods Appl. Sci. 11 (1989) 105–124.
Q. Lin and N. Yan, A rectangle test for singular solution with irregular meshes, in: Proc. of Systems Sci. & Systems Engrg., Great Wall (H.K.) (Culture Publ., 1991) pp. 236–237.
Q. Lin and Q. Zhu, Asymptotic expansion for the derivative of finite elements, J. Comput. Math. 2 (1984) 361–363.
B. Mercier and G. Raugel, Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en,, RAIRO Anal. Numér. 16 (1982) 405–461.
P.K. Moore, A posteriori error estimation with finite element semi-and fully discrete methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. Anal. 31 (1994) 149–169.
P.K. Moore and J.E. Flaherty, High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations, BIT 33 (1993) 309–331.
J. Nečas and I. Hlaváček, Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction (Elsevier, Amsterdam, 1981).
J. Němec, A posteriori error estimates for nonlinear elliptic equations, Ph.D. thesis, Math. Inst. Prague (2002).
K. Segeth, A posteriori error estimation with the finite element method of lines for a nonlinear parabolic equation in one space dimension, Numer. Math. 33 (1999) 455–475.
R. Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modèl. Math. Anal. Numér. 25 (1991) 151–168.
J.L. Synge, The Hypercircle in Mathematical Physics (Cambridge Univ. Press, Cambridge, 1957).
B. Szabó and I. Babuška, Finite Element Analysis (Wiley, New York, 1991).
T. Vejchodský, Fully discrete error estimation with the method of lines for a nonlinear parabolic problem, Appl. Math. 47 (2002).
R. Verfúerth, A review of a posteriori error estimation techniques for elasticity problems, Comput. Methods Appl. Mech. Engrg. 176 (1999) 419–440.
L.B.Wahlbin, Local behavior in finite element methods, in: Handbook of Numerical Analysis II, eds. P.G. Ciarlet and J.L. Lions (North-Holland, Amsterdam, 1991) pp. 353–522.
J. Wiesz, A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem, Comment. Math. Univ. Carolin 31 (1990) 315–322.
J. Weisz, On a-posteriori error estimate of approximate solutions to a mildly nonlinear nonpotential elliptic boundary value problem, Math. Nachr. 153 (1991) 231–236.
J. Weisz, A posteriori error estimate of approximate solutions to a nonlinear elliptic boundary value problem, Acta Math. Univ. Comenian LVIII-LIX (1991) 189–205.
J. Weisz, A posteriori error estimate of approximate solutions to a special nonlinear elliptic boundary value problem, Z. Angew. Math. Mech. 75 (1995) 79–81.
E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Nonlinear Monotone Operators (Springer, New York, 1990).
A. Ženíšek, Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations (Academic Press, London, 1990).
J.Z. Zhu and O.C. Zienkiewicz, Superconvergence recovery technique and a posteriori error estimators, Internat. J. Numer. Methods Engrg. 30 (1990) 1321–1339.
O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Part 1, Internat. J. Numer. Methods Engrg. 33 (1992) 1331–1364.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Křížek, M., Němec, J. & Vejchodský, T. A Posteriori Error Estimates for Axisymmetric and Nonlinear Problems. Advances in Computational Mathematics 15, 219–236 (2001). https://doi.org/10.1023/A:1014234911830
Issue Date:
DOI: https://doi.org/10.1023/A:1014234911830