A Posteriori Error Estimates for Axisymmetric and Nonlinear Problems | Advances in Computational Mathematics Skip to main content
Log in

A Posteriori Error Estimates for Axisymmetric and Nonlinear Problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose and examine the primal and dual finite element method for solving an axially symmetric elliptic problem with mixed boundary conditions. We derive an a posteriori error estimate and generalize the method used for a nonlinear elliptic problem. Finally, an a posteriori error estimate for a nonlinear parabolic problem based on the concept of hierarchical finite element basis functions is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ainsworth and A. Craig, A posteriori error estimators in the finite element method, Numer. Math. 60 (1992) 429–463.

    Google Scholar 

  2. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg. 142 (1997) 1–88.

    Google Scholar 

  3. I. Babuška, A-posteriori error estimation for the finite element method, in: Proc. of Conf. on Nonlinear Finite Element Analysis in Structural Mechanics, Bochum, 1980/1981, pp. 3–10.

  4. I. Babuška and A. Miller, A feedback finite element method with a posteriori error estimation. Part I, Comput. Methods Appl. Mech. Engrg. 61 (1987) 1–40.

    Google Scholar 

  5. I. Babuška and W. Rheinboldt, A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12 (1978) 1597–1615.

    Google Scholar 

  6. I. Babuška, T. Strouboulis and S.K. Gangaraj, Guaranteed computable bounds for the exact error in the finite element solution Part I: One-dimensional model problem, Comput. Methods Appl. Mech. Engrg. 176 (1999) 51–79.

    Google Scholar 

  7. R.E. Bank and A. Weiser, Some a posteriori error estimator for elliptic partial differential equations, Math. Comp. 44 (1985) 283–301.

    Google Scholar 

  8. B. Boroomand, O.C. Zienkiewicz and J.Z. Zhu, Recovery procedures in error estimation and adaptivity. Part I: Adaptivity in linear problems, Comput. Methods Appl. Mech. Engrg. 176 (1999) 111–125.

    Google Scholar 

  9. B. Boroomand and O.C. Zienkiewicz, Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour, Comput. Methods Appl. Mech. Engrg. 176 (1999) 127–146.

    Google Scholar 

  10. J.H. Brandts, Superconvergence and a posteriori error estimates for triangular mixed finite elements, Numer. Math. 68 (1994) 311–324.

    Google Scholar 

  11. K. Burrage, A special family of Runge-Kutta methods for solving stiff differential equations, BIT 18 (1978) 22–41.

    Google Scholar 

  12. J.C. Butcher, A transformed implicit Runge-Kutta method, J. Assoc. Comput. Mach. 26 (1979) 731–738.

    Google Scholar 

  13. P.G. Ciarlet, Basic error estimates for elliptic problems, in: Handbook of Numerical Analysis II, eds. P.G. Ciarlet and J.L. Lions (North-Holland, Amsterdam, 1991).

    Google Scholar 

  14. R. Durán, M.A. Muschietti and R. Rodríguez, On the asymptotic exactness of error estimators for linear triangular finite elements, Numer. Math. 59 (1991) 107–127.

    Google Scholar 

  15. J. Franců, Monotone operators. A survey directed to applications to differential equations, Appl.Math. 35 (1990) 257–301.

    Google Scholar 

  16. H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie-Verlag, Berlin, 1974).

    Google Scholar 

  17. J. Haslinger and I. Hlaváček, Convergence of a finite element method based on the dual variational formulation, Appl. Math. 21 (1976) 43–65.

    Google Scholar 

  18. I. Hlaváček and M. Křížek, Dual finite element analysis of three-dimensional axisymmetric elliptic problems, Parts I, II, Numer. Methods Partial Differential Equations 9 (1993) 507–526, 527–550.

    Google Scholar 

  19. I. Hlaváček, M. Křížek and J.Malý, On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type, J. Math. Anal. Appl. 184 (1994) 168–189.

    Google Scholar 

  20. C. Johnson, Numerical Solutions of Partial Differential Equations by the Finite Element Method (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  21. M. Křížek and P. Neittaanmäki, Finite Element Approximation of Variational Problems and Applications, Vol. 50 (Longman Scientific & Technical, Harlow, 1990).

    Google Scholar 

  22. M. Křížek and P. Neittaanmäki, Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications (Kluwer, Amsterdam, 1996).

    Google Scholar 

  23. M. Křížek, P. Neittaanmäki and R. Stenberg, eds., Finite Element Methods: Superconvergence, Postprocessing and A Posteriori Estimates, Proc. of Conf., Jyväskylä, 1996, Lecture Notes in Pure and Applied Mathematics, Vol. 196 (Marcel Dekker, New York, 1998).

    Google Scholar 

  24. S. Larsson, V. Thomée and N.Y. Zhang, Interpolation of coefficients and transformation of the dependent variable in the finite element methods for the nonlinear heat equation, Math. Methods Appl. Sci. 11 (1989) 105–124.

    Google Scholar 

  25. Q. Lin and N. Yan, A rectangle test for singular solution with irregular meshes, in: Proc. of Systems Sci. & Systems Engrg., Great Wall (H.K.) (Culture Publ., 1991) pp. 236–237.

  26. Q. Lin and Q. Zhu, Asymptotic expansion for the derivative of finite elements, J. Comput. Math. 2 (1984) 361–363.

    Google Scholar 

  27. B. Mercier and G. Raugel, Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en r, z et séries de Fourier en,, RAIRO Anal. Numér. 16 (1982) 405–461.

    Google Scholar 

  28. P.K. Moore, A posteriori error estimation with finite element semi-and fully discrete methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. Anal. 31 (1994) 149–169.

    Google Scholar 

  29. P.K. Moore and J.E. Flaherty, High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations, BIT 33 (1993) 309–331.

    Google Scholar 

  30. J. Nečas and I. Hlaváček, Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction (Elsevier, Amsterdam, 1981).

    Google Scholar 

  31. J. Němec, A posteriori error estimates for nonlinear elliptic equations, Ph.D. thesis, Math. Inst. Prague (2002).

  32. K. Segeth, A posteriori error estimation with the finite element method of lines for a nonlinear parabolic equation in one space dimension, Numer. Math. 33 (1999) 455–475.

    Google Scholar 

  33. R. Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modèl. Math. Anal. Numér. 25 (1991) 151–168.

    Google Scholar 

  34. J.L. Synge, The Hypercircle in Mathematical Physics (Cambridge Univ. Press, Cambridge, 1957).

    Google Scholar 

  35. B. Szabó and I. Babuška, Finite Element Analysis (Wiley, New York, 1991).

    Google Scholar 

  36. T. Vejchodský, Fully discrete error estimation with the method of lines for a nonlinear parabolic problem, Appl. Math. 47 (2002).

  37. R. Verfúerth, A review of a posteriori error estimation techniques for elasticity problems, Comput. Methods Appl. Mech. Engrg. 176 (1999) 419–440.

    Google Scholar 

  38. L.B.Wahlbin, Local behavior in finite element methods, in: Handbook of Numerical Analysis II, eds. P.G. Ciarlet and J.L. Lions (North-Holland, Amsterdam, 1991) pp. 353–522.

    Google Scholar 

  39. J. Wiesz, A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem, Comment. Math. Univ. Carolin 31 (1990) 315–322.

    Google Scholar 

  40. J. Weisz, On a-posteriori error estimate of approximate solutions to a mildly nonlinear nonpotential elliptic boundary value problem, Math. Nachr. 153 (1991) 231–236.

    Google Scholar 

  41. J. Weisz, A posteriori error estimate of approximate solutions to a nonlinear elliptic boundary value problem, Acta Math. Univ. Comenian LVIII-LIX (1991) 189–205.

    Google Scholar 

  42. J. Weisz, A posteriori error estimate of approximate solutions to a special nonlinear elliptic boundary value problem, Z. Angew. Math. Mech. 75 (1995) 79–81.

    Google Scholar 

  43. E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Nonlinear Monotone Operators (Springer, New York, 1990).

    Google Scholar 

  44. A. Ženíšek, Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations (Academic Press, London, 1990).

    Google Scholar 

  45. J.Z. Zhu and O.C. Zienkiewicz, Superconvergence recovery technique and a posteriori error estimators, Internat. J. Numer. Methods Engrg. 30 (1990) 1321–1339.

    Google Scholar 

  46. O.C. Zienkiewicz and J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates, Part 1, Internat. J. Numer. Methods Engrg. 33 (1992) 1331–1364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Křížek, M., Němec, J. & Vejchodský, T. A Posteriori Error Estimates for Axisymmetric and Nonlinear Problems. Advances in Computational Mathematics 15, 219–236 (2001). https://doi.org/10.1023/A:1014234911830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014234911830

Navigation