Abstract
We present an approach to path planning for humanoid robots that computes dynamically-stable, collision-free trajectories from full-body posture goals. Given a geometric model of the environment and a statically-stable desired posture, we search the configuration space of the robot for a collision-free path that simultaneously satisfies dynamic balance constraints. We adapt existing randomized path planning techniques by imposing balance constraints on incremental search motions in order to maintain the overall dynamic stability of the final path. A dynamics filtering function that constrains the ZMP (zero moment point) trajectory is used as a post-processing step to transform statically-stable, collision-free paths into dynamically-stable, collision-free trajectories for the entire body. Although we have focused our experiments on biped robots with a humanoid shape, the method generally applies to any robot subject to balance constraints (legged or not). The algorithm is presented along with computed examples using both simulated and real humanoid robots.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amato, N. and Wu, Y. 1996. A randomized roadmap method for path and manipuation planning. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA), pp. 113–120.
Barraquand, J. and Latombe, J.-C. 1990. Robot motion planning: A distributed representation approach. Int. J. Robot. Res., 10(6):628–649.
Bohlin, R. and Kavraki, L. 2000. Path planning using lazy PRM. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA).
Boor, V., Overmars, M., and van der Stappen, A. 1999. The Gaussian sampling strategy for probabilistic roadmap planners. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA).
Canny, J. 1988. The Complexity of Robot Motion Planning, MIT Press: Cambridge, MA.
Cherif, M. and Laugier, C. 1995. Motion planning of autonomous off-road vehicles under physical interaction constraints. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA).
Flash, T. and Hogan, N. 1985. The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci., 5(7):1688–1703.
Frazzoli, E., Dahleh, M., and Feron, E. 1999. Robust hybrid control for autonomous vehicles motion planning. Technical Report, LIDS-P-2468. Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA.
Gottschalk, S., Lin, M.C., and Manocha, D. 1996. OBBTREE: A hierarchical structure for rapid interference detection. InSIGGRAPH '96 Proc.
Han, L. and Amato, N.M. 2000. A kinematics-based probabilistic roadmap method for closed chain systems. In Proc. Int. Workshop Alg. Found. Robot. (WAFR).
Hirai, K. 1997. Current and future perspective of Honda humanoid robot. In Proc. IEEE/RSJ Int. Conf. Intell. Robot. & Sys. (IROS), pp. 500–508.
Hirukawa, H., Mourrain, B., and Papegay, Y. 2001. A symbolic-numeric silhouette algorithm. In Proc. IEEE/RSJ Int. Conf. Intell. Robot. & Sys. (IROS).
Hirukawa, H. and Papegay, Y. 2000. Motion planning of objects in contact by the silhouette algorithm. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA), pp. 722–729.
Horsch, T., Schwarz, F., and Tolle, H. 1994. Motion planning for many degrees of freedom: Random Reflections at C-space obstacles. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA), pp. 3318–3323.
Hsu, D., Latombe, J.-C., and Motwani, R. 1997. Path planning in expansive configuration spaces. Int. J. Comput. Geom. & Appl., 9(4/5):495–512.
Kagami, S., Kanehiro, F., Tamiya, Y., Inaba, M., and Inoue, H. 2000. AutoBalancer: An online dynamic balance compensation scheme for humanoid robots. In Proc. Int. Workshop Alg. Found. Robot. (WAFR).
Kavraki, L., Švestka, P., Latombe, J.C., and Overmars, M.H. 1996. Probabilistic roadmaps for path planning in high-dimensional configuration space. IEEE Trans. Robot. & Autom. 12(4):566–580.
Kindel, R., Hsu, D., Latombe, J., and Rock, S. 2000. Kinodynamic motion planning amidstmoving obstacles. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA).
Kuffner, J., Kagami, S., Inaba, M., and Inoue, H. 2000a. Graphical simulation and high-level control of humanoid robots. In Proc. IEEE/RSJ Int. Conf. Intell. Robot. & Sys. (IROS).
Kuffner, J. and LaValle, S. 2000. RRT-Connect:Anefficient approach to single-query path planning. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA).
Kuffner, J., Kagami, S., Inaba, M., and Inoue, H. 2000b. Dynamically-stable motion planning for humanoid robots. In IEEE-RAS Int. Conf. Human. Robot. (Humanoids), Boston, MA.
LaValle, S. and Kuffner, J. 1999. Randomized kinodynamic planning. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA).
LaValle, S. and Kuffner, J. 2000. Rapidly-exploring random trees: Progress and prospects. In Proc. Int.Workshop Alg. Found. Robot. (WAFR).
LaValle, S., Yakey, J., and Kavraki, L. 1999. Aprobabilistic roadmap approach for systems with closed kinematic chains. In Proc. IEEE Int. Conf. Robot. & Autom. (ICRA).
LaValle, S.M. 1998. Rapidly-exploring random trees: A new tool for path planning. TR 98–11, Computer Science Department, Iowa State University.
Mazer, E., Ahuactzin, J.M., and Bessière, P. 1998. The Ariadne's clew algorithm. J. Artificial Intell. Res., 9:295–316.
Nagasaka, K., Inaba, M., and Inoue, H. 1999. Walking pattern generation for a humanoid robot based on optimal gradient method. In Proc. IEEE Int. Conf. Sys. Man. & Cyber.
Nakamura, Y. et al. 2000. V-HRP: Virtual humanoid robot platform. In IEEE-RAS Int. Conf. Human. Robot. (Humanoids).
Nakamura, Y. and Yamane, K. 2000. Interactive motion generation of humanoid robots via dynamics filter. In Proc. of First IEEE-RAS Int. Conf. on Humanoid Robots.
Pratt, J. and Pratt, G. 1999. Exploiting natural dynamics in the control of a 3D bipedal walking simulation. In Proc. of Int. Conf. on Climbing and Walking Robots (CLAWAR99).
Raibert, M. 1986. Legged Robots that Balance, MIT Press: Cambridge, MA.
Reif, J.H. 1979. Complexity of the mover's problem and generalizations. In Proc. 20th IEEE Symp. on Foundations of Computer Science (FOCS), pp. 421–427.
Schwartz, J.T. and Sharir, M. 1983. On the 'Piano Movers' problem: II. General techniques for computing topological properties of real algebraic manifolds. Advances in applied Mathematics, 4:298–351.
Shiller, Z. and Dubowsky, S. 1991. On computing time-optimal motions of robotic manipulators in the presence of obstacles. IEEE Trans. Robot. & Autom., 7(6):785–797.
Shiller, Z. and Gwo, R. 1991. Dynamic motion planning of autonomous vehicles. IEEE Trans. Robot. & Autom., 7(2):241–249.
Vukobratovic, M., Borovac, B., Surla, D., and Stokie, D. 1990. Biped Locomotion: Dynamics, Stability, Control, and Applications. Springer-Verlag: Berlin.
Yamaguchi, J., Inoue, S., Nishino, D., and Takanishi, A. 1998. Development of a bipedal humanoid robot having antagonistic driven joints and three dof trunk. In Proc. IEEE/RSJ Int. Conf. Intell. Robot. & Sys. (IROS), pp. 96–101.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kuffner, J.J., Kagami, S., Nishiwaki, K. et al. Dynamically-Stable Motion Planning for Humanoid Robots. Autonomous Robots 12, 105–118 (2002). https://doi.org/10.1023/A:1013219111657
Issue Date:
DOI: https://doi.org/10.1023/A:1013219111657