Gradient-constrained minimum networks. I. Fundamentals | Journal of Global Optimization Skip to main content
Log in

Gradient-constrained minimum networks. I. Fundamentals

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In three-dimensional space an embedded network is called gradient-constrained if the absolute gradient of any differentiable point on the edges in the network is no more than a given value m. A gradient-constrained minimum Steiner tree T is a minimum gradient-constrained network interconnecting a given set of points. In this paper we investigate some of the fundamental properties of these minimum networks. We first introduce a new metric, the gradient metric, which incorporates a new definition of distance for edges with gradient greater than m. We then discuss the variational argument in the gradient metric, and use it to prove that the degree of Steiner points in T is either three or four. If the edges in T are labelled to indicate whether the gradients between their endpoints are greater than, less than, or equal to m, then we show that, up to symmetry, there are only five possible labellings for degree 3 Steiner points in T. Moreover, we prove that all four edges incident with a degree 4 Steiner point in T must have gradient m if m is less than 0.38. Finally, we use the variational argument to locate the Steiner points in T in terms of the positions of the neighbouring vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brazil, M., Thomas, D.A. and Weng, J.F. (1998), Gradient-Constrained Minimal Steiner Trees, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 40, 23-38.

    Google Scholar 

  • Garey, M.R., Graham, R.L. and Johnson, D.S. (1977), The Complexity of Computing Steiner Minimal Trees, SIAM J. Applied Mathematics 32, 835-859.

    Google Scholar 

  • Gilbert, E.N. and Pollak, H.O. (1968), Steiner Minimal Lees, SIAMJ. Applied Mathematics 16, 1-29.

    Google Scholar 

  • Hwang, F.K., Richard, D.S. and Winter, P. (1992), The Steiner Tree Problem; Annals of Discrete Mathematics 53, Elsvier Science Publishers B.V., Amsterdam.

    Google Scholar 

  • Rubinstein, J.H. and Thomas, D.A. (1991), A Variational Approach to the Steiner Network Problem, Annals of Operations Research 33, 481-499.

    Google Scholar 

  • Smith, W.D. (1992), How To Find Minimal Trees in Euclidean d-space, Algorithmica 7, 137-177.

    Google Scholar 

  • Warme, D.M., Winter, P. and Zachariasen, M. (2000), Exact Algorithms for Plane Steiner Tree Problems: A Computational Study. In Du, D.-Z., Smith, J.M. and Rubinstein, J.H. Advances in Steiner Trees, Kluwer Academic Publishers, Boston, 81-116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazil, M., Rubinstein, J., Thomas, D. et al. Gradient-constrained minimum networks. I. Fundamentals. Journal of Global Optimization 21, 139–155 (2001). https://doi.org/10.1023/A:1011903210297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011903210297

Navigation